
EDF R&D CRML specification Version 1.2

Accessibility : Free Page 1 of 136 © EDF SA

D2.1 CRML specification

Access1: PU

Type2: Report

Version: 1.2

Due Dates3: M12, M24

Environment for model-based rigorous adaptive co-design and operation of CPS

Executive summary4:

CRML (Common Requirement Modelling Language) is being developed out of the desire to express
formal multidisciplinary requirements in the form of spatiotemporal constraints on the behaviour of
cyber-physical systems, in particular energy systems.

This document constitutes the formal specification of CRML as defined within the EMBrACE project.

It is made of two main parts: the formal semantics, written in mathematical notation, and the syntax,
completed by numerous examples.

It also contains the expression of two CRML libraries:

• The ETL library for the evaluation of requirements, i.e. to decide whether requirements are
satisfied or not over a given time period.

• The FORM-L library that provides standard functions (CRML operators) for the expression of
requirements in the form of time-dependent constraints. This library is inspired by the work of
Thuy Nguyen of EDF Lab Chatou.

The first version (version 0.1) of this report is available in the form of PowerPoint slides.

The current version (version 1.2) includes some minor updates compared to the official release
delivered for the final ITEA review of EMBrACE (version 1.1).

1 Access classification as per definitions in PCA; PU = Public, CO = Confidential. Access classification per

deliverable stated in FPP.

2 Deliverable type according to FPP, note that all non-report deliverables must be accompanied by a deliverable

report.

3 Due month(s) according to FPP.

4 It is mandatory to provide an executive summary for each deliverable.

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 2 of 136 © EDF SA

Deliverable Contributors:

 Name Organisation
Primary role
in project

Main
Author(s)5

Deliverable
Leader6

Daniel Bouskela EDF WP2 Leader X

Contributing
Author(s)7

Audrey Jardin EDF
WP2
Contributor

Internal
Reviewer(s)8

5 Indicate Main Author(s) with an “X” in this column.

6 Deliverable leader according to FPP, role definition in PCA.

7 Person(s) from contributing partners for the deliverable, expected contributing partners stated in FPP.

8 Typically person(s) with appropriate expertise to assess deliverable structure and quality.

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 3 of 136 © EDF SA

Document History:

Version Date Reason for Change Status9

0.1 30/01/2021 First Draft Version (PowerPoint slides) Draft

0.2 18/01/2022 First Report Version Draft

0.3 27/01/2022 Improvements Draft

0.4 11/02/2022
Removal of keywords operator, template and
category. New type: Probability.

Draft

0.5 15/02/2022
New operator for types Real, Integer and Boolean:
at. Correction of categories varying1 and varying2.

Draft

0.6 08/03/2022 Improvements Draft

0.7 11/03/2022

New operator for Boolean and Events: or.
Correction of semantics of operators before and
after. Correction of the ETL operator ‘becomes
false’.

Draft

0.8 15/04/2022

Simplification of the definition of a requirement.
The differential operator is not used anymore. The
logical difference, pre and trim operators are
removed.

Draft

1.0 22/08/2022 First final version released. Released

1.1 06/12/2022
Addition of keyword new. Removal of keyword nil.
Use of keyword external is modified.

Released

1.2 05/12/2023

Addition of keyword time. Generalization of the use
of keyword new. Some typo fixes. Correction in the
definition of FORM-L operators which imply
elapsed time periods.

Released

9 Status = “Draft”, “In Review”, “Released”.

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 4 of 136 © EDF SA

AVERTISSEMENT / CAUTION

L’accès à ce document, ainsi que son utilisation, sont strictement limités aux personnes expressément
habilitées par EDF.

EDF ne pourra être tenu responsable, au titre d’une action en responsabilité contractuelle, en
responsabilité délictuelle ou de toute autre action, de tout dommage direct ou indirect, ou de quelque
nature qu’il soit, ou de tout préjudice, notamment, de nature financière ou commerciale, résultant de
l’utilisation d’une quelconque information contenue dans ce document.

Les données et informations contenues dans ce document sont fournies « en l’état » sans aucune
garantie expresse ou tacite de quelque nature que ce soit.

Toute modification, reproduction, extraction d’éléments, réutilisation de tout ou partie de ce document
sans autorisation préalable écrite d’EDF ainsi que toute diffusion externe à EDF du présent document
ou des informations qu’il contient est strictement interdite sous peine de sanctions.

The access to this document and its use are strictly limited to the persons expressly authorized to do
so by EDF.

EDF shall not be deemed liable as a consequence of any action, for any direct or indirect damage,
including, among others, commercial or financial loss arising from the use of any information contained
in this document.

This document and the information contained therein are provided “as are” without any warranty of any
kind, either expressed or implied.

Any total or partial modification, reproduction, new use, distribution or extraction of elements of this
document or its content, without the express and prior written consent of EDF is strictly forbidden.
Failure to comply to the above provisions will expose to sanctions.

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 5 of 136 © EDF SA

Executive Summary

CRML (Common Requirement Modelling Language) is being developed out of the desire to express
formal multidisciplinary requirements in the form of spatiotemporal constraints on the behaviour of
cyber-physical systems, in particular energy systems.

This document constitutes the formal specification of CRML as defined within the EMBrACE project.

It is made of two main parts: the formal semantics, written in mathematical notation, and the syntax,
completed by numerous examples.

It also contains the expression of two CRML libraries:

• The ETL library for the evaluation of requirements, i.e. to decide whether requirements are
satisfied or not over a given time period.

• The FORM-L library that provides standard functions (CRML operators) for the expression of
requirements in the form of time-dependent constraints. This library is inspired by the work of
Thuy Nguyen of EDF Lab Chatou.

The first version (version 0.1) of this report is available in the form of PowerPoint slides.

The current version (version 1.2) includes some minor updates compared to the official release
delivered for the final ITEA review of EMBrACE (version 1.1).

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 6 of 136 © EDF SA

Summary

AVERTISSEMENT / CAUTION ..4

EXECUTIVE SUMMARY ..5

SUMMARY ...6

LIST OF FIGURES .. 10

LIST OF TABLES ... 11

ACRONYMS .. 12

1. RATIONALE FOR CRML .. 13

1.1. MOTIVATION ... 13
1.2. BASIC PRINCIPLES ... 14

1.2.1. Structure of the requirements .. 14
1.2.2. Mathematical foundation of the language ... 15
1.2.3. Syntax of the language .. 18

2. CRML ARCHITECTURE .. 19

3. FORMAL SEMANTICS .. 20

3.1. CONTINUOUS CLOCK ... 20
3.2. 4-VALUED BOOLEANS .. 20
3.3. EVENTS .. 23
3.4. MULTIPLE EVENTS ... 24
3.5. OPERATORS ON EVENTS .. 25

3.5.1. Equal operator ... 25
3.5.2. Different operator... 26
3.5.3. Before operator .. 26
3.5.4. After operator ... 27
3.5.5. Min operator .. 28
3.5.6. Max operator ... 28
3.5.7. Elapsed operator ... 29
3.5.8. Delay operator ... 29
3.5.9. Conjunction operator ... 30
3.5.10. Disjunction operator ... 30
3.5.11. Composition of Booleans with events .. 30

3.6. DISCRETE CLOCKS .. 31
3.7. OPERATORS ON DISCRETE CLOCKS .. 32

3.7.1. Projection operator .. 32
3.7.2. Bounded projection operator ... 33
3.7.3. Delay operator ... 35
3.7.4. Elapsed operator ... 35
3.7.5. Conjunction operator ... 36
3.7.6. Disjunction operator... 36
3.7.7. Filter operator .. 36
3.7.8. Extending operators on a discrete clock to the continuous time domain 37

3.8. SINGLE TIME PERIODS ... 38
3.9. MULTIPLE TIME PERIODS .. 38
3.10. OPERATORS ON MULTIPLE TIME PERIODS .. 40

3.10.1. Intersection operator .. 40
3.10.2. Truncation operator.. 40

3.11. TEMPORAL OPERATORS ON BOOLEANS ... 41
3.11.1. Accumulation operator ... 41
3.11.2. Filter operator ... 42

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 7 of 136 © EDF SA

3.11.3. Duration operator ... 42
3.11.4. Delay operator ... 43
3.11.5. Sum operator ... 43
3.11.6. Integral operator... 44

3.12. REQUIREMENTS... 44
3.12.1. Definition .. 44
3.12.2. Composition of requirements with logical operators .. 47
3.12.3. Satisfaction of requirements .. 49
3.12.4. Applying frame time periods to requirements .. 49
3.12.5. Simulating requirements .. 50

3.13. STOCHASTIC REQUIREMENTS ... 50
3.14. DOMAINS .. 53

3.14.1. Definition .. 53
3.14.2. Domain extensions .. 53
3.14.3. Domain specializations .. 55
3.14.4. Partial domains .. 56
3.14.5. Domain aliases .. 56

3.15. TYPES .. 58
3.16. VARIABLES .. 58
3.17. OPERATORS .. 59
3.18. TEMPLATES ... 60
3.19. CATEGORIES ... 60
3.20. SETS .. 63

3.20.1. Definition .. 63
3.20.2. Set namespace .. 64

3.21. OPERATORS ON SETS .. 64
3.21.1. Unary operators ... 64
3.21.2. Binary operators ... 66
3.21.3. Filter operator ... 67

3.22. OBJECTS .. 68
3.23. CLASSES .. 70

3.23.1. Definition .. 70
3.23.2. Class extensions .. 70
3.23.3. Class specializations ... 70
3.23.4. Partial classes .. 71

3.24. MODELS .. 72
3.24.1. Definition .. 72
3.24.2. Model extensions ... 73

3.25. LIBRARIES ... 75
3.26. PACKAGES .. 76

4. SYNTAX ... 77

4.1. NOTATION... 77
4.2. KEYWORDS ... 77

4.2.1. Types ... 77
4.2.2. Special values ... 78
4.2.3. Special characters ... 78
4.2.4. Operators ... 78

4.3. EXPRESSIONS ... 80
4.4. COMMENTS ... 81
4.5. TYPE REAL ... 82

4.5.1. Constructors .. 82
4.5.2. Operators ... 83

4.6. TYPE INTEGER .. 84
4.6.1. Constructors .. 84
4.6.2. Operators ... 85

4.7. TYPE STRING .. 87
4.7.1. Constructors .. 87

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 8 of 136 © EDF SA

4.7.2. Operators ... 88
4.8. TYPE BOOLEAN ... 88

4.8.1. Constructors .. 88
4.8.2. Operators ... 89

4.9. TYPE EVENT ... 90
4.9.1. Constructors .. 90
4.9.2. Operators ... 90

4.10. TYPE CLOCK ... 91
4.10.1. Constructors ... 91
4.10.2. Operators ... 92

4.11. TYPE PERIOD .. 93
4.11.1. Constructors ... 93
4.11.2. Operators ... 93

4.12. TYPE PERIODS .. 93
4.12.1. Constructors ... 93
4.12.2. Operators ... 94

4.13. TYPE OPERATOR ... 94
4.13.1. Constructors ... 94

4.14. TYPE TEMPLATE .. 97
4.14.1. Constructors ... 97

4.15. TYPE CATEGORY ... 98
4.15.1. Constructors ... 98
4.15.2. Operators ... 98

4.16. SETS .. 99
4.16.1. Constructors ... 99
4.16.2. Operators ... 99

4.17. TYPE TYPE .. 102
4.17.1. Constructors ... 102
4.17.2. Operators ... 103

4.18. ELEMENTS .. 105
4.18.1. Constructors ... 105
4.18.2. Operators ... 105

4.19. TYPE CLASS .. 108
4.19.1. Constructors ... 108
4.19.2. Operators ... 108

4.20. OBJECTS .. 111
4.20.1. Constructors ... 111
4.20.2. Operators ... 112

4.21. TYPE MODEL ... 114
4.21.1. Constructors ... 114
4.21.2. Operators ... 114

4.22. TYPE LIBRARY ... 121
4.22.1. Constructors ... 121

4.23. TYPE PACKAGE .. 124
4.23.1. Constructors ... 124

4.24. TYPE PROBABILITY .. 126
4.24.1. Constructors ... 126
4.24.2. Operators ... 126

5. ETL LIBRARY .. 128

5.1. OPERATORS ON BOOLEANS ... 128
5.2. OPERATORS ON CLOCKS ... 128
5.3. OPERATORS ON EVENTS .. 128
5.4. OPERATORS FOR THE EVALUATION OF REQUIREMENTS .. 129

6. FORM-L LIBRARY .. 131

6.1. TIME PERIODS ... 131
6.2. REQUIREMENTS .. 132

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 9 of 136 © EDF SA

7. BIBLIOGRAPHY .. 135

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 10 of 136 © EDF SA

List of Figures

Fig. 1. Some stakeholders’ disciplines ... 13
Fig. 2. Architecture of the verification model .. 14
Fig. 3. General architecture of requirements .. 16
Fig. 4. Operating domain with uncertainty on the boundary .. 17
Fig. 5. Multiple time period with zero length single time periods .. 17
Fig. 6. CRML architecture .. 19
Fig. 7. The continuous clock ... 20
Fig. 8. Event generated by a Boolean .. 23
Fig. 9. Multiple event generated by a Boolean ... 25
Fig. 10. Event equal operator ... 26
Fig. 11. Event before operator .. 27
Fig. 12. Event after operator ... 28
Fig. 13. Event min operator .. 28
Fig. 14. Event max operator ... 29
Fig. 15. Event elapsed operator ... 29
Fig. 16. Event delay operator ... 30
Fig. 17. Composition of Booleans with events ... 31
Fig. 18. Discrete clock generated by a Boolean ... 32
Fig. 19. Discrete clock projection operator ... 33
Fig. 20. Continuous clock projection operator on a discrete clock ... 33
Fig. 21. Discrete clock bounded projection operator .. 34
Fig. 22. Continuous clock bounded projection operator on a discrete clock 34
Fig. 23. Clock tick delay operator ... 35
Fig. 24. Discrete clock delay operator .. 35
Fig. 25. Discrete clock elapsed operator .. 35
Fig. 26. Discrete clock conjunction operator .. 36
Fig. 27. Discrete clock disjunction operator ... 36
Fig. 28. Discrete clock filter operator .. 37
Fig. 29. Extending operators on discrete clocks to the continuous time domain 38
Fig. 30. Single time period .. 38
Fig. 31. Multiple time period ... 39
Fig. 32. Non-overlapping time period ... 39
Fig. 33. Reduced graphical representation of a non-overlapping time period 39
Fig. 34. Non-overlapping time period generated by a Boolean .. 40
Fig. 35. Truncation of a multiple time period .. 41
Fig. 36. Boolean duration operator ... 43
Fig. 37. Boolean delay operator ... 43
Fig. 38. Sum operator ... 44
Fig. 39. Example 1 with the decision event inside the time period .. 46
Fig. 40. Example 1 with the decision event at the end of the time period .. 47
Fig. 41. Example 1 with N = 5 .. 48
Fig. 42. Example 2 with N = 5 .. 49
Fig. 43. Frame time period to define the simulation period .. 50
Fig. 43. Class diagram of the cooling system architecture... 119

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 11 of 136 © EDF SA

List of Tables

Table 1. Truth table for the logical negation ... 20
Table 2. Truth table for the logical conjunction .. 21
Table 3. Truth table for the logical disjunction .. 22
Table 4. Truth table for the logical equality .. 22
Table 5. Truth table for the Boolean accumulation operator .. 41
Table 6. Truth table for the Boolean filter operator .. 42

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 12 of 136 © EDF SA

Acronyms

CRML Common Requirement Modelling Language

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 13 of 136 © EDF SA

1. Rationale for CRML

1.1. Motivation

It is important to ensure that complex cyber-physical systems such as energy systems comply with
their objectives and constraints, because they are systems of important socio-economic nature for the
common good.

The acronym of CRML stands for Common Requirement Modelling Language.

The purpose of CRML is to offer to the numerous stakeholders involved in the design, operation and
maintenance of cyber-physical systems a common language to negotiate and agree upon a common
set of requirements in order to ensure that they can comply with their mutual commitments while
meeting their own objectives.

The idea is to write the requirements using a formal language to provide a solution to following
challenges:

• Provide comprehensive descriptions of all spatiotemporal assumptions and constraints that
bear on the system under study. Constraints can be of all kinds: physical, performance
(reliability, availability, economical…), regulatory (safety, security, environmental, reserve
capacity for grid balancing, grid access and priority dispatch…).

• The requirement models must be easily legible and understandable by all stakeholders
whatever their expertise and business domain. It is expected that a common requirement
language will improve the productivity of studies. To that end, the syntax of the language must
be close to natural language.

Fig. 1. Some stakeholders’ disciplines

• The systems which are the targets of the language exhibit strong physical aspects. Therefore,
particular attention must be paid to physical aspects: physical units, real time, events,
synchronism and asynchronism, components and objects, failures and uncertainties. Time
dependent continuous and discrete variables must be dealt with in an asynchronous
framework. This goes well beyond finite automata that are the reference in model checking.

• Perform automatic verifications by coupling requirement models with behavioral models of any
kind and complexity: min and max limits (that represent authorized operation domains), finite
state automata (that represent logical system operation), multidomain physical 0D/1D/2D/3D
models (that represent detailed physical behavior), … Verifications are performed by co-

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 14 of 136 © EDF SA

simulating requirement models with behavioral models. Requirement models act as observers
to detect possible requirement violations of the behavioral models.

Behavioral models can be deterministic or stochastic. For the latter, probabilistic criteria are
added to requirements and Monte Carlo techniques are used to simulate the verification
model, which consists of the requirement model, the behavioral models, the observers of the
behavioral models, and the links between observers and requirements which are called
“bindings” (cf. Fig. 2).

• Generate automatically optimal architectures that comply with the requirements (constraint
optimization, the constraints being given by the requirement model, and the cost function
corresponding in general to economic objectives). This remains a largely unexplored aspect
(at least for energy systems) and should be useful to tackle the new system architectures for
the energy transition (energy mix with higher shares of renewables, complex energy markets,
increased environmental constraints, decentralized grid architectures…).

Fig. 2. Architecture of the verification model

1.2. Basic principles

1.2.1. Structure of the requirements

The language introduces the new concept of requirement made of four parts:

1. Spatial locator (WHERE): it defines the objects that are subject to the requirement. The word
“spatial” means that the objects are selected depending on some criteria that can be time
dependent.

2. Time locator (WHEN): it defines the time periods when the requirements should be satisfied. A
time period is initiated and terminated when events occur. An event occurs when a Boolean
becomes true. Therefore, a time locator can be composed of multiple time periods that can
overlap.

3. Condition to be fulfilled (WHAT): it is the condition to be verified by the objects selected with
the spatial locator within the bounds of the time periods selected by the time locator.

4. Probabilistic constraint (HOW_WELL): it defines a probabilistic constraint on the condition to
be fulfilled.

Time periods and probabilistic constraints constitute the novelty of the approach. They are required to
handle realistic requirements, because realistic requirements cannot be satisfied anytime at any cost.
Time periods define when requirements are in effect and the time delay to satisfy them. Probabilistic
constraints define some tolerance for the system to fail complying with the requirements. These two
aspects have profound technical and economic impact on the design and operation of the system.

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 15 of 136 © EDF SA

Example of a requirement: “While in service, the system should always stay within its operating
domain. However, if the system fails to stay within its operating domain, it should not stay outside of its
operating domain for more than ten minutes more than three times per year, with a probability of
success of 99.99 %.”

In this requirement, three time locators and two conditions are involved. The three time locators are: a
fixed time period “while the system is in service”, time periods of ten minutes starting when the event
“leaving the operating domain” occurs, and a sliding time period of one year starting when the system
is started and finishing when the system is stopped. The two conditions are “stay within the operating
domain”, and “number of operating domain departures less than three”. The probabilistic constraint is
the constant 99.99 %. However, it could depend on time for, e.g., requirements invoking probabilities
of failure that use the Weibull law. The spatial locator is “the system”.

It turns out that this requirement is in fact a combination of three elementary requirements that are
related by Boolean conjunction (∧) and inference (⟹) operators. It is therefore important to be able to
combine requirements using Boolean operators. Also, a distinction must be made between the
elementary requirements and the full requirement: the elementary requirements can fail, but the full
requirement must be satisfied.

Example of a requirement: “While they are in operation, all pumps in the system should not cavitate.”

In this requirement, the spatial locator is “all pumps in the system”. It is a set that is only defined in
intention, because its elements are only known by their property of being pumps. Therefore, the
number of elements of the set is not known. The set could even be empty. The time locator is “While
they are in operation”, which is attached to each pump because pumps can be operating at different
time periods. The condition is “should not cavitate”. This kind of requirement is generic because it
applies to any system, even without pumps. It is therefore important to be able to build libraries of
generic requirements that can be used on different systems and use the notion of objects to structure
the requirements.

1.2.2. Mathematical foundation of the language

The language builds on four pillars of mathematics: Boolean algebra, set theory, function theory and
probability theory.

Boolean algebra

Boolean algebra is used to handle the time locators (WHEN) and the conditions to be fulfilled (WHAT).
The idea is to use a Boolean algebra made of four values { true, false, undecided, undefined }.

To understand the meaning of the 4-valued Boolean algebra, let us take the simple example of a
project report that must be written before a given deadline. The time locator for this requirement is a
time period that extends from the start of the project until the deadline which is often the end of the
project. Therefore, the requirement is: “The project report must be completed before the end of the
project”. Before the start of the project, the value of the requirement is undefined, which means that
the requirement is not applicable. After the start of the project and before the end of the project, the
value of the requirement is undecided which means that the requirement is applicable but its outcome
is uncertain until either the report is completed before or at the end of the time period (thus before the
deadline or just in time), in such case the requirement is satisfied and its value is true, or until the end
of the time period, in such case the requirement is not satisfied and its value is false (the report is late
or cancelled).

The three values { true, false, undecided } are necessary to compute the value of the requirement,
taking into account the fact that the decision cannot be made instantly: one must wait either until the
document is completed, or until the deadline to decide whether the requirement is satisfied or not. This
event is called the decision event. The three values { true, false, undecided } constitute by themselves
a Boolean algebra which is similar to the 3-valued Kleene logic, but with different semantics.

The value undefined is necessary to combine requirements using Boolean operators. When a
requirement is outside of its time locator, it is not applicable. Therefore, if it is combined with a second
requirement, at time periods outside of its time locator it should have no effect on the other

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 16 of 136 © EDF SA

requirement. As an illustrating example, let us consider the requirement “While they are in operation,
all pumps in the system should not cavitate.” Obviously, when a given pump is not in operation, the
fact that it cavitates or not should not affect the outcome of the requirement on the pumps that are in
operation.

The production and evaluation of requirements builds on the 4-valued Boolean logic (cf. Fig. 3):

• An event occurs when a Boolean becomes true (whatever its past value is false, undecided, or
undefined).

• Time periods open when an event occurs, and close when an event occurs (the closing event
can be equal to or different from the opening event).

• Conditions are Boolean expressions.

• Requirements result from the association of conditions with multiple time periods.

• The value of a requirement is a Boolean. Therefore, a requirement can be mathematically
seen as a function that associates a couple (condition, multiple time period) to a 4-valued
Boolean. This is denoted (𝜑, 𝑃) ⟶ 𝜑 ⊗ 𝑃, where 𝜑 is the condition and 𝑃 is the time locator
that consists of multiple time periods (i.e., a set of time periods).

• The value of a requirement can be reused to form other events and other conditions, and
hence other requirements.

Fig. 3. General architecture of requirements

Booleans have different types depending on their origin:

• 2-valued Booleans { true, false } are the classical Booleans in general issued from the
behavioral model that captures the behavior of the system under study.

• 3-valued Booleans { true, false, undecided } can be produced by the behavioral model to
represent classical Booleans with uncertainties. For instance, Fig. 4 represents an operating
domain whose limits are known with uncertainties: if the operating point is within the
uncertainty of the boundary, then its position is undecided, otherwise it is true (inside the
domain) or false (outside of the domain). They also correspond to time periods with no delay
between them, i.e. such that time periods cover the whole arrow of time.

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 17 of 136 © EDF SA

Fig. 4. Operating domain with uncertainty on the boundary

• 3-valued Booleans { true, false, undefined } correspond to the values of requirements such
that their associated time periods have their opening and closing events equal (i.e. such that
the duration of the time periods is zero, cf. Fig. 5). Then the value of such requirements can
never be undecided, and consequently the decision is instantly made (the opening, decision
and closing events are the same).

Fig. 5. Multiple time period with zero length single time periods

• 4-valued Booleans { true, false, undecided, undefined } are always the result of the evaluation
of requirements. Using such Booleans to build requirements allow to issue requirements on
requirements (i.e., meta-requirements) such as “10 seconds after requirement R1 fails,
requirement R2 must be satisfied”, where requirements R1 and R2 are not specified (i.e., are
considered as dummy variables in the expression of the meta-requirement).

In limiting situations where the length of time periods and the delay between time periods go to zero,
Boolean variables can only take the values true or false (because undecided can only be found strictly
inside time periods, and undefined can only be found strictly outside time periods). Thus the 2-valued
Boolean algebra { true, false } corresponds in continuous time to limiting unrealistic situations when
decisions can be made instantly anytime.

Set theory

The CRML language consists of elements which belong to sets, which can also be set elements (but
not all elements are sets). It is assumed that there exists a unique universal set that contains all sets.

Each element is a typed couple (variable, value), where variable stands for the name of the element,
and value is the value of the element. The type of the element is the domain that it belongs to, a
domain being the set of all elements of the same kind, such as real numbers, Booleans, class
definitions, classes (a class contains all objects instances of that class), etc.

Sets are therefore used to structure models as arrays of objects of different types and relations
between objects, like in relational databases.

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 18 of 136 © EDF SA

Function theory

CRML functions are very simple and are called operators. They are of the form 𝑦 = 𝑓(𝑥1, … , 𝑥𝑛), where

𝑦 and 𝑥1, … , 𝑥𝑛 are language elements, as defined above. 𝑓 is the name of the operator, and 𝑦 is its

value, which is computed by a unique expression that combines operators on 𝑥1, … , 𝑥𝑛.

For instance, the Boolean disjunction 𝑥1 𝑜𝑟 𝑥2 can be defined from the Boolean conjunction 𝑥1 𝑎𝑛𝑑 𝑥2

and the Boolean negation 𝑛𝑜𝑡 𝑥: 𝑥1 𝑜𝑟 𝑥2 ∶= 𝑛𝑜𝑡 (𝑛𝑜𝑡 𝑥1 𝑎𝑛𝑑 𝑛𝑜𝑡 𝑥2) .

Operators could be recursive, but this is of no obvious use in the context of requirement modelling.

Although 𝑥1, … , 𝑥𝑛 could be operators (like in 𝜆-calculus), this is not required in CRML.

A requirement can be mathematically viewed as a function that associates the couple (condition, set of
time periods) to its Boolean value. Therefore, the framework of 𝜆-calculus could be more appropriate

(at least theoretically) to handle requirements (because everything is function in 𝜆-calculus), however
this has not been investigated.

1.2.3. Syntax of the language

The ambition of CRML is to be close to natural language. This is obtained by replacing the usual
functional notation 𝑦 = 𝑓(𝑥1, … , 𝑥𝑛) by generic (or boilerplate) sentences with words that represent the
placeholders of the operator’s arguments.

For instance, for function 𝑛 = 𝑐𝑜𝑢𝑛𝑡 (𝐶, 𝑃) that counts the number of events generated by a clock 𝐶

within a given time period 𝑃, the CRML operator is defined as

operator [Integer] count Clock C inside Period P = expr (C,P);

where [Integer] is the return type of the operator, and C and P are the two arguments of the operator
of respective types Clock (a clock is a set of events) and Period (a period is a time period). The words
count and inside represent the placeholders for the two arguments C and P. expr (C,P) denotes the
expression that computes the value of the operator from C and P. Then the expression

Integer n is count C inside P;

is equivalent to 𝑛 = 𝑐𝑜𝑢𝑛𝑡 (𝐶, 𝑃).

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 19 of 136 © EDF SA

2. CRML architecture

The ability to write CRML models for the expression and simulation of requirements builds on two
main parts:

• The CRML language itself.

• Two CRML libraries:

o The ETL library for the evaluation of requirements, whose purpose is to decide
whether requirements are satisfied or not over a given time period.

o The FORM-L library that provides standard functions (CRML operators) for the
expression of requirements in the form of time-dependent constraints. This library is
inspired by the work of Thuy Nguyen of EDF Lab Chatou.

The CRML language is divided into several chapters, each chapter corresponding to a language type.

Fig. 6. CRML architecture

CRML

Operators
Types

Classes
Objects

Sets
Probabilities

Booleans
Events
Clocks

Time
periods

Requirements

CRML function libraries

ETL FORM-L

Evaluation of requirements Functions to express requirements

Reals
Integers
Strings

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 20 of 136 © EDF SA

3. Formal semantics

3.1. Continuous clock

There is one continuous clock denoted ℭ. It represents the Newtonian time. All time instants 𝑡 in ℭ are

real numbers: 𝑡 ∈ ℝ, where ℝ is the domain of real numbers. Therefore, time has no upper or lower
bounds.

The time scale of ℭ depends on an arbitrary time origin 𝑡0. Therefore, the value of 𝑡0 can have any

value (i.e., can be chosen arbitrarily). Only time differences (or delays) 𝑡 − 𝑡0 between any time

instant 𝑡 and the time origin 𝑡0 have unique values (i.e., they cannot be chosen arbitrarily). It is
customary to take 𝑡0 = 0 so that 𝑡 = 𝑡 − 𝑡0 has a unique value, but the choice of 𝑡0 on the time axis is
still arbitrary.

In the following figures, the continuous clock is represented by a continuous horizontal arrow.

Fig. 7. The continuous clock

In the sequel, all variables are functions of time 𝑡 ∈ ℭ: 𝑥 = 𝑥(𝑡) where 𝑥 denotes any variable.

Let 𝑓 be a function of several variables:

𝑓: 𝔻1 × 𝔻2 × … × 𝔻𝑛 ⟶ 𝔻

(𝑥1, 𝑥2, … , 𝑥𝑛) ⟼ 𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)

where the 𝔻𝑖 and 𝔻 stand of any domain.

Unless specified otherwise, the values of all variables 𝑥𝑖 are taken at the same instant 𝑡 ∈ ℭ.

3.2. 4-valued Booleans

4-valued Booleans 𝜑 satisfy the following algebra:

 𝜑 ∶= 𝜑 | ¬𝜑 | 𝜑1 ∧ 𝜑2 (1)

The logical negation (¬) and conjunction (ᴧ) operators are defined with the following truth tables:

Table 1. Truth table for the logical negation

not Logical negation

𝝋 true false undecided undefined

¬𝝋 false true undecided undefined

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 21 of 136 © EDF SA

Table 2. Truth table for the logical conjunction

and Logical conjunction

𝝋𝟏 ∧ 𝝋𝟐 true false undecided undefined

true true false undecided true

false false false false false

undecided undecided false undecided undecided

undefined true false undecided undefined

The rationale for Table 1 and Table 2 is the following:

1. The truth table reduced to the values true and false are the same as the one for the classical
2-valued Booleans.

2. 𝜑 is undecided means that it not known whether 𝜑 is true or false. Hence, if 𝜑 is undecided,

then it is not known whether ¬𝜑 is true or false, and therefore ¬𝜑 is undecided. If 𝜑1 is
undecided and 𝜑2 is true, then it is not known whether 𝜑1 ∧ 𝜑2 is true or false, because it is

true if 𝜑1 is true, and false if 𝜑1 is false. Therefore 𝜑1 ∧ 𝜑2 is undecided. However, if 𝜑2 is

false, then 𝜑1 ∧ 𝜑2 is false whatever the value of 𝜑1.

3. 𝜑 is undefined means that 𝜑 should not have any influence on the result of the Boolean
operation because it is not applicable (cf. Section 1.2.2). Therefore, undefined is the neutral
element for all Boolean operators.

The negation and conjunction operators verify the following properties of Boolean algebra:

• Involution: ∀𝜑, ¬(¬𝜑) = 𝜑

• Commutativity: ∀𝜑1, ∀𝜑2, 𝜑1 ∧ 𝜑2 = 𝜑2 ∧ 𝜑1

• Associativity: ∀𝜑1, ∀𝜑2, (𝜑1 ∧ 𝜑2) ∧ 𝜑3 = 𝜑1 ∧ (𝜑2 ∧ 𝜑3)

• Idempotence: ∀𝜑, 𝜑 ∧ 𝜑 = 𝜑

But the following property is not verified:

• Contradiction: ∀𝜑, 𝜑 ∧ ¬𝜑 = 𝑓𝑎𝑙𝑠𝑒

All other logical operators are defined using the Morgan laws:

• Logical disjunction:

 𝜑1 ∨ 𝜑2 ∶= ¬(¬𝜑1 ∧ ¬𝜑2) (2)

• Logical exclusive disjunction (or parity):

 𝜑1 ⊕ 𝜑2 ∶= (𝜑1 ∧ ¬𝜑2) ∨ (¬𝜑1 ∧ 𝜑2) (3)

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 22 of 136 © EDF SA

• Logical inference:

 𝜑1 ⟹ 𝜑2 ∶= ¬𝜑1 ∨ 𝜑2 (4)

It is easy to verify that the operators defined with the Morgan laws make sense considering the
meaning given to undecided and undefined. For instance, for the logical disjunction, the truth table
obtained using Eq. (2) and the truth table obtained using the rationale given for the logical conjunction
operator are equal, cf. Table 3.

Table 3. Truth table for the logical disjunction

or Logical disjunction

𝝋𝟏 ∨ 𝝋𝟐 true false undecided undefined

true true true true true

false true false undecided false

undecided true undecided undecided undecided

undefined true false undecided undefined

For clarity, the truth table of the equality operator (=) is given in the following table.

Table 4. Truth table for the logical equality

equal Logical equality

𝝋𝟏 = 𝝋𝟐 true false undecided undefined

true true false false false

false false true false false

undecided false false true false

undefined false false false true

The logical difference operator is defined as

 𝜑1 ≠ 𝜑2 ∶= ¬(𝜑1 = 𝜑2) (5)

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 23 of 136 © EDF SA

Contrary to 2-valued Boolean algebra, in the 4-valued Boolean algebra, the negation operator is
different from the difference operator: 𝜑1 ≠ 𝜑2 does not imply 𝜑1 = ¬𝜑2 and reciprocally. Therefore,
one must be cautious not to confound negation with difference when using 4-valued Boolean algebra.

The domain of 4-valued Booleans { true, false, undecided, undefined } is denoted 𝔹 or 𝔹4.

The domain of 2-valued Booleans { true, false } is denoted 𝔹2.

It is worthwhile noting that the two domains of 3-valued Booleans { true, false, undecided } and { true,
false, undefined } are indeed Boolean algebras (they satisfy the Morgan laws). They are respectively
denoted 𝔹3 and 𝔹3

′ .

Thus:

• 𝔹 = 𝔹4 = {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒, 𝑢𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑, 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑}

• 𝔹3 = {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒, 𝑢𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑}

• 𝔹3
′ = {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒, 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑}

• 𝔹2 = {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}

3.3. Events

An event 𝐸 corresponds to the single occurrence of a 4-valued Boolean 𝜑 becoming true, which is

denoted 𝜑 ↑:

 𝐸 ∶= 𝜑 ↑ (6)

Notice that before the event, the value of 𝜑 can be false, undecided or undefined.

Events always occur in the continuous time domain ℭ.

The instant 𝑡 of occurrence of event 𝜑 ↑ is denoted @𝜑 ↑:

 𝑡 ∶= @𝜑 ↑ (7)

where 𝑡 is the instant of occurrence of 𝜑 ↑.

The event that corresponds to the current time 𝑡 ∈ ℭ is denoted ℭ ↑. Therefore 𝑡 = @ℭ ↑.

The event corresponding to the current instant in the continuous clock ℭ is denoted ℭ ↑. Therefore, the

current instant is 𝑡 = @ℭ ↑.

Fig. 8. Event generated by a Boolean

The domain of events is denoted ℰ.

ϕ

ϕ

true

false, undecided, undefined

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 24 of 136 © EDF SA

At instant time 𝑡, ℰ contains all events that have occurred before 𝑡, including 𝑡. It does not contain
future events that will occur after 𝑡 excluding 𝑡 because it is not decidable at 𝑡 whether future events

will actually occur. Therefore, the domain of events ℰ is time dependent and the number of its
elements increases in time as the number of occurred events increases in time. Before the occurrence
of the first event, ℰ is the empty set.

The domain of non-empty events is denoted ℰ∗. Therefore ℰ∗ always contains the first event.

 {
 |ℰ| ≥ 0
 |ℰ∗| > 0

 (8)

where |𝑆| denotes the number of elements in set 𝑆.

ℰ∗ is an ordered set because the events in ℰ are ordered by increasing occurrences in time:

 ℰ∗(𝑡) ∶= { 𝜑1 ↑, 𝜑2 ↑, … , 𝜑𝑖 ↑, … , 𝜑𝑛 ↑ } such that ∀𝑖, ∀𝑗 > 𝑖, @𝜑𝑖 ↑ ≤ @𝜑𝑗 ↑ (9)

where the 𝜑𝑖 ↑ are all the events that have occurred before 𝑡.

Because 𝜑𝑛 ↑ is the last event in ℰ∗(𝑡), the following relation holds:

 ℰ∗(𝑡) = ℰ∗(𝜑𝑛 ↑) (10)

where ℰ∗(𝜑𝑛 ↑) denotes the value of ℰ∗ at the instant of occurrence of 𝜑𝑛 ↑ (ℰ∗(𝜑𝑛 ↑) = ℰ∗(@𝜑𝑛 ↑)). .

Therefore

 ℰ∗(𝜑𝑛 ↑) ∶= { 𝜑1 ↑, 𝜑2 ↑, … , 𝜑𝑖 ↑, … , 𝜑𝑛 ↑ } such that ∀𝑖, ∀𝑗 > 𝑖, @𝜑𝑖 ↑ ≤ @𝜑𝑗 ↑ (11)

Hence:

• 𝜑𝑖 ↑ occurs before 𝜑𝑗 ↑ can be formally expressed as 𝜑𝑗 ↑ ∉ ℰ∗(𝜑𝑖 ↑) if it is not known whether

𝜑𝑗 will occur or not, or 𝜑𝑖 ↑ ∈ ℰ∗(𝜑𝑗 ↑) or @𝜑𝑖 ↑ ≤ @𝜑𝑗 ↑ if 𝜑𝑗 has occurred.

• ℰ∗ = ℰ∗(𝜑|ℰ∗| ↑).

The set of events obtained after the disjunction of two events 𝜑1 ↑ and 𝜑2 ↑ (i.e., after at least one of

the events 𝜑1 ↑ or 𝜑2 ↑ has occurred) is denoted ℰ∗(𝜑1 ↑ ∨ 𝜑2 ↑). Therefore:

 ℰ∗(𝜑1 ↑ ∨ 𝜑2 ↑) ∶= {
ℰ∗(𝜑1 ↑) if 𝜑2 ↑ ∉ ℰ∗(𝜑1 ↑)

ℰ∗(𝜑2 ↑) if 𝜑1 ↑ ∉ ℰ∗(𝜑2 ↑)
 (12)

The set of events obtained after the conjunction of two events 𝜑1 ↑ and 𝜑2 ↑ (i.e., after the two events

 𝜑1 ↑ and 𝜑2 ↑ have occurred) is denoted ℰ∗(𝜑1 ↑ ∧ 𝜑2 ↑). Therefore:

 ℰ∗(𝜑1 ↑ ∧ 𝜑2 ↑) ∶= {
ℰ∗(𝜑1 ↑) if 𝜑2 ↑ ∈ ℰ∗(𝜑1 ↑)

ℰ∗(𝜑2 ↑) if 𝜑1 ↑ ∈ ℰ∗(𝜑2 ↑)
 (13)

3.4. Multiple events

A multiple event Ω is a subset of ℰ: Ω ∈ 2ℰ.

It is therefore a set of events ordered by increasing occurrences in time:

 Ω ∶= { 𝜑1 ↑, 𝜑2 ↑, … , 𝜑𝑖 ↑, … } such that ∀𝑖, ∀𝑗 > 𝑖, @𝜑𝑖 ↑ ≤ @𝜑𝑗 ↑ (14)

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 25 of 136 © EDF SA

Let us consider a Boolean 𝜓 that becomes true at each event 𝜑𝑖 ↑ (there are infinitely many of such

Booleans). Then Ω is generated by 𝜓. This is denoted Ω(ψ):

 Ω(ψ) ∶= { 𝜓(𝑡1) ↑, 𝜓(𝑡2) ↑, … , 𝜓(𝑡𝑖) ↑, … } (15)

Where the 𝑡𝑖 = @𝜑𝑖 ↑ are the time instants when 𝜓 becomes true (i.e., such that 𝜓(𝑡𝑖) ↑ = 𝜑𝑖 ↑) for all

𝑖 ∈ ℕ∗, 1 ≤ 𝑖 ≤ |Ω(𝜓)|.

The chosen Boolean 𝜓 that generates Ω(𝜓) is denoted 𝜓(Ω).

Note that the number of elements |Ω(𝜓)| is time dependent as the set Ω(𝜓) increases in time like any

subset of ℰ:

 |Ω(𝜓)| = {
0 if 𝑡 < 𝑡1

 𝑖 if 𝑖 ≤ 𝑡 < 𝑖 + 1
 (16)

Fig. 9. Multiple event generated by a Boolean

The domain of multiple events is denoted 𝒟. Then 𝒟 = 2ℰ (the set of the subsets of ℰ).

3.5. Operators on events

3.5.1. Equal operator

The equal operator tells whether two events 𝜑1 ↑ and 𝜑2 ↑ are equal, i.e. whether they occur at the
same time instant. It is formally defined as follows:

= : ℰ × ℰ ⟶ 𝔹

(𝜑1 ↑, 𝜑2 ↑) ⟼ 𝜑1 ↑ = 𝜑2 ↑ ∶= {

𝑡𝑟𝑢𝑒 if 𝜑2 ↑ ∈ ℰ∗(𝜑1 ↑) ∧ 𝜑1 ↑ ∈ ℰ∗(𝜑2 ↑)

𝑓𝑎𝑙𝑠𝑒 if ¬(𝜑2 ↑ ∈ ℰ∗(𝜑1 ↑) ∧ 𝜑1 ↑ ∈ ℰ∗(𝜑2 ↑))

𝑢𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 if 𝜑1 ↑ ∉ ℰ and 𝜑2 ↑ ∉ ℰ

 (17)

Eq. (17) means that 𝜑1 ↑ = 𝜑2 ↑ is 𝑡𝑟𝑢𝑒 if 𝜑1 ↑ and 𝜑2 ↑ occur at the same time instant. It is

𝑢𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 if none of the two events 𝜑1 ↑ or 𝜑2 ↑ occurs. It is 𝑓𝑎𝑙𝑠𝑒 otherwise. Therefore, the value of

𝜑1 ↑ = 𝜑2 ↑ is always known, even if 𝜑1 ↑ and/or 𝜑2 ↑ have not occurred.

Also notice that 𝜑1 ↑ = 𝜑2 ↑ does not imply that 𝜑1 = 𝜑2 (but the converse is true, cf. Fig. 10).

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 26 of 136 © EDF SA

Fig. 10. Event equal operator

3.5.2. Different operator

The different operator tells whether two events 𝜑1 ↑ and 𝜑2 ↑ are different, i.e. whether they occur at
different time instants. It is formally defined as follows:

≠ : ℰ × ℰ ⟶ 𝔹

(𝜑1 ↑, 𝜑2 ↑) ⟼ 𝜑1 ↑ ≠ 𝜑2 ↑ ∶= ¬(𝜑1 ↑ = 𝜑2 ↑)
 (18)

The value of 𝜑1 ↑ ≠ 𝜑2 ↑ is always known, even if 𝜑1 ↑ and/or 𝜑2 ↑ have not occurred.

Notice that Eq. (18) is consistent with the definition of the different operator from first principles:

𝜑1 ↑ ≠ 𝜑2 ↑ ∶= {

𝑡𝑟𝑢𝑒 if ¬(𝜑2 ↑ ∈ ℰ∗(𝜑1 ↑) ∧ 𝜑1 ↑ ∈ ℰ∗(𝜑2 ↑))

𝑓𝑎𝑙𝑠𝑒 if 𝜑2 ↑ ∈ ℰ∗(𝜑1 ↑) ∧ 𝜑1 ↑ ∈ ℰ∗(𝜑2 ↑)

𝑢𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 if 𝜑1 ↑ ∉ ℰ and 𝜑2 ↑ ∉ ℰ

)

3.5.3. Before operator

The before operator tells whether a first event 𝜑1 ↑ occurs before a second event 𝜑2 ↑. It is formally
defined as follows:

≤ : ℰ × ℰ ⟶ 𝔹

(𝜑1 ↑, 𝜑2 ↑) ⟼ 𝜑1 ↑ ≤ 𝜑2 ↑ ∶= {

𝑡𝑟𝑢𝑒 if 𝜑2 ↑ ∉ ℰ∗(𝜑1 ↑) ∨ 𝜑1 ↑ = 𝜑2 ↑

𝑓𝑎𝑙𝑠𝑒 if 𝜑1 ↑ ∉ ℰ∗(𝜑2 ↑)

𝑢𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 if 𝜑1 ↑ ∉ ℰ and 𝜑2 ↑ ∉ ℰ

 (19)

Eq. (19) means that 𝜑1 ↑ ≤ 𝜑2 ↑ is:

• 𝑢𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 if neither 𝜑1 ↑ nor 𝜑2 ↑ have occurred,

• 𝑡𝑟𝑢𝑒 if 𝜑1 ↑ has occurred first, or if 𝜑1 ↑ and 𝜑2 ↑ occur simultaneously,

• 𝑓𝑎𝑙𝑠𝑒 if 𝜑2 ↑ has occurred first.

Therefore, the value of 𝜑1 ↑ ≤ 𝜑2 ↑ is always known, even if 𝜑1 ↑ and/or 𝜑2 ↑ have not occurred.

The strictly before operator is defined as follows:

< : ℰ × ℰ ⟶ 𝔹

(𝜑1 ↑, 𝜑2 ↑) ⟼ 𝜑1 ↑ < 𝜑2 ↑ ∶= (𝜑1 ↑ ≤ 𝜑2 ↑) ∧ (𝜑1 ↑ ≠ 𝜑2 ↑)
 (20)

The value of 𝜑1 ↑ < 𝜑2 ↑ is always known, even if 𝜑1 ↑ and/or 𝜑2 ↑ have not occurred.

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 27 of 136 © EDF SA

Fig. 11. Event before operator

3.5.4. After operator

The after operator tells whether a first event 𝜑1 ↑ occurs after a second event 𝜑2 ↑. It is formally
defined as follows:

≥ : ℰ × ℰ ⟶ 𝔹

(𝜑1 ↑, 𝜑2 ↑) ⟼ 𝜑1 ↑ ≥ 𝜑2 ↑ ∶= 𝜑2 ↑ ≤ 𝜑1 ↑
 (21)

Notice that Eq. (21) is consistent with the definition of the after operator from first principles:

≥ : ℰ × ℰ ⟶ 𝔹

(𝜑1 ↑, 𝜑2 ↑) ⟼ 𝜑1 ↑ ≥ 𝜑2 ↑ ∶= {

𝑡𝑟𝑢𝑒 if 𝜑1 ↑ ∉ ℰ∗(𝜑2 ↑) ∨ 𝜑2 ↑ = 𝜑1 ↑

𝑓𝑎𝑙𝑠𝑒 if 𝜑2 ↑ ∉ ℰ∗(𝜑1 ↑)

𝑢𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 if 𝜑1 ↑ ∉ ℰ and 𝜑2 ↑ ∉ ℰ

Eq. (21) means that 𝜑1 ↑ ≥ 𝜑2 ↑ is:

• 𝑢𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 if neither 𝜑1 ↑ nor 𝜑2 ↑ have occurred,

• 𝑡𝑟𝑢𝑒 if 𝜑2 ↑ has occurred first or if 𝜑2 ↑ and 𝜑1 ↑ occur simultaneously,

• 𝑓𝑎𝑙𝑠𝑒 if 𝜑1 ↑ has occurred first.

Therefore, the value of 𝜑1 ↑ ≥ 𝜑2 ↑ is always known, even if 𝜑1 ↑ and/or 𝜑2 ↑ have not occurred.

The strictly after operator is defined as follows:

> : ℰ × ℰ ⟶ 𝔹

(𝜑1 ↑, 𝜑2 ↑) ⟼ 𝜑1 ↑ > 𝜑2 ↑ ∶= 𝜑2 ↑ < 𝜑1 ↑
 (22)

The value of 𝜑1 ↑ > 𝜑2 ↑ is always known, even if 𝜑1 ↑ and/or 𝜑2 ↑ have not occurred.

ϕ1 ϕ2

ϕ2 < ϕ1

false

undecided

ϕ1 < ϕ2

true

undecided

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 28 of 136 © EDF SA

Fig. 12. Event after operator

3.5.5. Min operator

The min operator computes the first occurring event between two events 𝜑1 ↑ and 𝜑2 ↑, 𝜑2 ↑ occurring

before or after 𝜑1 ↑. It is formally defined as follows:

min: ℰ × ℰ ⟶ 2ℰ

(𝜑1 ↑, 𝜑2 ↑) ⟼ min(𝜑1 ↑, 𝜑2 ↑) ∶= {

{𝜑1 ↑} if (𝜑1 ↑ ≤ 𝜑2 ↑) = 𝑡𝑟𝑢𝑒

{𝜑2 ↑} if (𝜑2 ↑ ≤ 𝜑1 ↑) = 𝑡𝑟𝑢𝑒
∅ else

 (23)

Eq. (23) produces a multiple time event to cope with the possibility of non-occurrence of 𝜑1 ↑ and 𝜑2 ↑.

Notice that Eq. (23) is consistent with the definition of the min operator from first principles:

min(𝜑1 ↑, 𝜑2 ↑) ∶= {
 {𝜑1 ↑} if 𝜑2 ↑ ∉ ℰ∗(𝜑1 ↑) ∨ 𝜑1 ↑ = 𝜑2 ↑

{𝜑2 ↑} if 𝜑1 ↑ ∉ ℰ∗(𝜑2 ↑) ∨ 𝜑2 ↑ = 𝜑1 ↑
∅ else

Fig. 13. Event min operator

3.5.6. Max operator

The max operator computes the last occurring event between two events 𝜑1 ↑ and 𝜑2 ↑, 𝜑2 ↑ occurring

before or after 𝜑1 ↑. It is formally defined as follows:

max: ℰ × ℰ ⟶ 2ℰ

(𝜑1 ↑, 𝜑2 ↑) ⟼ max(𝜑1 ↑, 𝜑2 ↑) ∶= {

{𝜑1 ↑} if 𝜑2 ↑ ∈ ℰ∗(𝜑1 ↑)

{𝜑2 ↑} if 𝜑1 ↑ ∈ ℰ∗(𝜑2 ↑)

∅ else

 (24)

Eq. (24) produces a multiple time event to cope with the possibility of non-occurrence of 𝜑1 ↑ and 𝜑2 ↑.

Notice that the following definition is not correct because 𝜑1 ↑ and 𝜑2 ↑ must have occurred to provide

a non-empty value for max(𝜑1 ↑, 𝜑2 ↑):

max(𝜑1 ↑, 𝜑2 ↑) ∶≠ {{

{𝜑1 ↑} if 𝜑1 ↑ ≥ 𝜑2 ↑

{ 𝜑2 ↑} if 𝜑2 ↑ ≥ 𝜑1 ↑
∅ else

ϕ1 ϕ2

ϕ1 > ϕ2

false

undecided

ϕ2 > ϕ1

true

undecided

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 29 of 136 © EDF SA

Fig. 14. Event max operator

3.5.7. Elapsed operator

The elapsed operator computes the elapsed time between two events 𝜑1 ↑ and 𝜑2 ↑, 𝜑2 ↑ occurring

after 𝜑1 ↑, which means that 𝜑1 ↑ ∈ ℰ∗(𝜑2 ↑). It is denoted −:

−∶ ℰ∗(𝜑2 ↑) × ℰ∗(𝜑2 ↑) ⟶ ℝ+ such that 𝜑2 ↑ ≥ 𝜑1 ↑

(𝜑1 ↑, 𝜑2 ↑) ⟼ 𝜑2 ↑ − 𝜑1 ↑ = 𝑑
 (25)

where 𝑑 ∈ ℝ+. 𝑑 is the elapsed time, or delay between 𝜑1 ↑ and 𝜑2 ↑. The value of 𝜑2 ↑ − 𝜑1 ↑ is not

known until ℰ∗(𝜑2 ↑) exists, i.e. until the second event 𝜑2 ↑ has occurred.

Notice that Eq. (25) is consistent with Eq. (17), (19) and (20), but not equivalent since they have
different definition domains:

𝜑1 ↑ − 𝜑2 ↑ = 0 ⟺ 𝜑1 ↑ = 𝜑2 ↑

𝜑2 ↑ − 𝜑1 ↑ ≥ 0 ⟺ 𝜑2 ↑ ≥ 𝜑1 ↑

𝜑2 ↑ − 𝜑1 ↑ > 0 ⟺ 𝜑2 ↑ > 𝜑1 ↑

If 𝜑1 ↑ occurs at time 𝑡1 and 𝜑2 ↑ occurs at time 𝑡2, then the elapsed time between the two events is

given by 𝜑2 ↑ − 𝜑1 ↑.

 𝑡2 − 𝑡1 = @𝜑2 ↑ − @𝜑1 ↑ = 𝜑2 ↑ − 𝜑1 ↑ (26)

Fig. 15. Event elapsed operator

3.5.8. Delay operator

The delay operator applied on event 𝜑1 ↑ generates a second event 𝜑2 ↑= 𝜑1 ↑ + 𝑑 after 𝜑1 ↑ where

𝑑 ∈ ℝ+ is the delay between 𝜑1 ↑ and 𝜑2 ↑. It is formally defined as follows:

+: ℰ × ℝ+ ⟶ 2ℰ

(𝜑1 ↑, 𝑑) ⟼ 𝜑1 ↑ + 𝑑 ∶= {𝜑2 ↑ such that @𝜑2 ↑ = @𝜑1 ↑ + 𝑑 }
 (27)

d

ϕ1

ϕ1 ϕ2+ d

ϕ2

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 30 of 136 © EDF SA

Therefore 𝜑1 ↑ + 𝑑 is the empty set as long as 𝜑1 ↑ + 𝑑 has not occurred, and a set that contains one

event when 𝜑1 ↑ + 𝑑 has occurred.

Notice that Eq. (27) is consistent with Eq. (25) because:

@𝜑2 ↑ = @𝜑1 ↑ + 𝑑 ⟺ 𝜑2 ↑ − 𝜑1 ↑ = 𝑑

Fig. 16. Event delay operator

3.5.9. Conjunction operator

The conjunction operator ∧ applied on two events 𝜑1 ↑ and φ2 ↑ generates the event 𝜑 ↑ = 𝜑1 ↑ = φ2 ↑

if 𝜑1 ↑ and φ2 ↑ occur at the same instant in time. It is formally defined as follows:

∧ : ℰ × ℰ ⟶ 2ℰ

(𝜑1 ↑, 𝜑2 ↑) ⟼ 𝜑1 ↑ ∧ 𝜑2 ↑ ≔ { 𝜑 ↑ such that 𝜑 ↑ = 𝜑1 ↑ = φ2 ↑ }
 (28)

Therefore 𝜑1 ↑ ∧ 𝜑2 ↑ is the empty set if 𝜑1 ↑ or 𝜑2 ↑ have not occurred, or if 𝜑1 ↑ ≠ φ2 ↑, and a set

that contains the event 𝜑1 ↑ if 𝜑1 ↑ has occurred and 𝜑1 ↑ = φ2 ↑.

The conjunction operator ∧ applied on an event 𝜑 ↑ and a multiple event Ω yields a multiple event
{ 𝜑 ↑ } if 𝜑 ↑ is an event of Ω. It is formally defined as follows:

ℰ × 𝒟 ⟶ 𝒟

(𝜑 ↑, Ω) ⟼ 𝜑 ↑ ∧ Ω ≔ {𝜑 ↑} ∩ Ω
 (29)

3.5.10. Disjunction operator

The disjunction operator ∨ applied on two events 𝜑1 ↑ and φ2 ↑ yields a multiple event Ω that contains

the two events 𝜑1 ↑ and φ2 ↑. It is formally defined as follows:

∨ : ℰ × ℰ ⟶ 𝒟

(𝜑1 ↑, 𝜑2 ↑) ⟼ 𝜑1 ↑ ∨ 𝜑2 ↑ ≔ { 𝜑1 ↑, φ2 ↑ }
 (30)

Therefore 𝜑1 ↑ ∨ 𝜑2 ↑ is the empty set if 𝜑1 ↑ and 𝜑2 ↑ have not occurred, and a set that contains the

event 𝜑1 ↑ if 𝜑1 ↑ has occurred and the event 𝜑2 ↑ if 𝜑2 ↑ has occurred.

The disjunction operator ∨ applied on an event 𝜑 ↑ and a multiple event Ω yields a multiple event

Φ that contains 𝜑 ↑ and the events of Ω. It is formally defined as follows:

ℰ × 𝒟 ⟶ 𝒟

(𝜑 ↑, Ω) ⟼ 𝜑 ↑ ∨ Ω ≔ {𝜑 ↑} ∪ Ω
 (31)

3.5.11. Composition of Booleans with events

A Boolean 𝜑 can be composed with and event 𝜓 ↑ as follows:

𝑜𝑝: 𝔹 × ℰ ⟶ 𝔹

(𝜑, 𝜓 ↑) ⟼ 𝜑 𝑜𝑝 𝜓 ↑ ∶= 𝜑 𝑜𝑝 {
𝑡𝑟𝑢𝑒 if 𝑡 = @𝜓 ↑

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 if 𝑡 ≠ @𝜓 ↑

 (32)

duration

ϕ

ϕ ϕ+ duration

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 31 of 136 © EDF SA

where 𝑜𝑝 denotes the binary logical operators ∧ or ∨.

A Boolean 𝜑 can be composed with a multiple event Ω as follows:

𝑜𝑝: 𝔹 × 𝒟 ⟶ 𝔹

(𝜑, Ω) ⟼ 𝜑 𝑜𝑝 Ω ∶= ((𝜑 𝑜𝑝 Ω1) 𝑜𝑝 Ω2) … 𝑜𝑝 Ω|Ω|
 (33)

where 𝑜𝑝 denotes the binary logical operators ∧ or ∨.

Fig. 17. Composition of Booleans with events

3.6. Discrete clocks

A discrete clock Ω is a multiple event Ω. Therefore, the terms ‘discrete clock’ and ‘multiple event’ are
synonymous.

It is therefore a set of events ordered by increasing occurrences in time:

 Ω ∶= { 𝜑1 ↑, 𝜑2 ↑, … , 𝜑𝑖 ↑, … } such that ∀𝑖, ∀𝑗 > 𝑖, @𝜑𝑖 ↑ ≤ @𝜑𝑗 ↑ (34)

The 𝜑𝑖 ↑ in Eq. (34) are called the clock ticks. The rank of the clock tick 𝜑𝑖 ↑ in Ω is denoted rank(𝜑𝑖 ↑
 ∈ Ω).

Let us consider a Boolean 𝜓 that becomes true at each event 𝜑𝑖 ↑ (e.g., 𝜓 = 𝑓𝑎𝑙𝑠𝑒 ∨ Ω). Then Ω is

generated by 𝜓. This is denoted Ω(𝜓):

 Ω(𝜓) ∶= { 𝜓(𝑡1) ↑, 𝜓(𝑡2) ↑, … , 𝜓(𝑡𝑖) ↑, … } (35)

where the 𝑡𝑖 = @𝜑𝑖 ↑ are the time instants when 𝜓 becomes true (i.e., such that 𝜓(𝑡𝑖) ↑ = 𝜑𝑖 ↑) for all

𝑖 ∈ ℕ∗, 1 ≤ 𝑖 ≤ |Ω(𝜓)|. When no confusion is possible between clocks and events, it is also possible to

write Ω(𝜓) = 𝜓 ↑.

The chosen Boolean 𝜓 that generates Ω(𝜓) is denoted 𝜓(Ω). If the clock Ω(𝜓) is written Ω(𝜓) = 𝜓 ↑,

then 𝜓(Ω) = 𝜓.

Note that Ω(𝑓𝑎𝑙𝑠𝑒) = ∅, which can be denoted 𝑓𝑎𝑙𝑠𝑒 ↑ = ∅.

The discrete time associated to a discrete clock is given by the sequence number 𝑖 of the clock tick,
but each clock tick is associated with its time occurrence in the continuous clock domain. The ith tick of

clock Ω is denoted Ω𝑖 = 𝜓(𝑡𝑖) ↑. It is occurring at discrete time 𝑖 ∈ ℕ∗ in the discrete clock domain Ω

and at continuous time 𝑡𝑖 ∈ ℝ in the continuous clock domain ℭ.

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 32 of 136 © EDF SA

 Ω(𝜓) ∶= { Ω1, Ω2, … , Ω𝑖 , … } (36)

where Ω𝑖 = 𝜓(𝑡𝑖) ↑ for all 𝑖 ∈ ℕ∗, 1 ≤ 𝑖 ≤ |Ω(𝜓)|.

If the notation 𝜓 ↑ is used to denote clock Ω(𝜓), then Ω𝑖 = (𝜓 ↑)𝑖. Then the event 𝜓 ↑ can be

considered as the first tick of clock 𝜓 ↑:

 𝜓 ↑ ≡ (𝜓 ↑)1 (37)

The rank function is defined as:

rank: Ω ⟶ ℕ

 Ω𝑖 ⟼ rank(Ω𝑖) = 𝑖
 (38)

The discrete time associated to clock Ω is given by the number of ticks |Ω| of Ω. |Ω| increases in time

by one unit at each new tick Ω|Ω|. Ω|Ω| is thus called the current tick of clock Ω. |Ω| = 0 before the first
tick (the set Ω is empty). The discrete time associated to Ω is not defined when Ω is empty because

when |Ω| = 0, Ω|Ω| is not defined (Ω𝑖 is defined for 𝑖 ≥ 1).

 |Ω| = {
0 if 𝑡 < @Ω1

 𝑖 if @Ω𝑖 ≤ 𝑡 < @Ω𝑖+1 (39)

where @Ω𝑖 denotes the instant of occurrence of tick Ω𝑖.

Ω(𝑖) denotes the value of Ω at instant @Ω𝑖:

 Ω(𝑖) ∶= Ω(Ω𝑖) = { Ω1, Ω2, … , Ω𝑖 } (40)

Therefore, Ω ≠ ∅ ⟹ Ω = Ω(|Ω|).

Fig. 18. Discrete clock generated by a Boolean

The domain of discrete clocks is denoted 𝒟. Then 𝒟 = 2ℰ (the set of the subsets of ℰ).

The set of the subsets of ℰ(𝜑 ↑) is denoted 𝒟(𝜑 ↑): 𝒟(𝜑 ↑) = 2ℰ(𝜑↑).

3.7. Operators on discrete clocks

3.7.1. Projection operator

The projection 𝜑 ↑ Ω⁄ of an event 𝜑 ↑ on a discrete clock Ω is the first tick of Ω that follows 𝜑 ↑. It is
formally defined as follows:

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 33 of 136 © EDF SA

 ⁄ : ℰ × 𝒟 ⟶ 𝒟

(𝜑 ↑, Ω) ⟼ 𝜑 ↑ Ω⁄ ≔ {
 { Ω𝑖 = min

𝑗≥𝑖
(Ω𝑗 ≥ 𝜑 ↑) if ∃𝑘 such that Ω𝑘 ≥ 𝜑 ↑ }

∅ if ∄𝑘 such that Ω𝑘 ≥ 𝜑 ↑

 (41)

The projection operator Ω1 Ω2⁄ of a discrete clock Ω1 on a discrete clock Ω2 is defined as follows:

 ⁄ : 𝒟 × 𝒟 ⟶ 𝒟

(Ω1, Ω2) ⟼ Ω1 Ω2⁄ ∶= ⋃ Ω1
𝑖 Ω2⁄

|Ω1|
𝑖=1

 (42)

Fig. 19. Discrete clock projection operator

The projection 𝑡 Ω⁄ of a time instant 𝑡 ∈ ℭ on a discrete clock Ω is the first tick of Ω that follows 𝑡. It is
formally defined as follows:

 ⁄ : 𝔈 × 𝒟 ⟶ 𝒟

(𝑡, Ω) ⟼ 𝑡 Ω⁄ ≔ {
 { Ω𝑖 = min

𝑗≥𝑖
(@Ω𝑗 ≥ 𝑡) if ∃𝑘 such that @Ω𝑘 ≥ 𝑡 }

∅ if ∄𝑘 such that @Ω𝑘 ≥ 𝑡

 (43)

It follows from this definition that the projection of the continuous clock ℭ on a discrete clock Ω and that

the projection of a discrete clock Ω on the continuous clock ℭ are the discrete clock Ω itself:

 ℭ Ω ⁄ = Ω (44)

 Ω ℭ ⁄ = Ω (45)

Fig. 20. Continuous clock projection operator on a discrete clock

3.7.2. Bounded projection operator

The bounded projection 𝜑 ↑ 𝑑Ω⁄ of an event 𝜑 ↑ on a discrete clock Ω is the first tick of Ω that follows
𝜑 ↑ if it is delayed by at most 𝑑 ∈ ℝ+ from 𝜑 ↑. Otherwise, the projection is lost. It is formally defined as
follows:

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 34 of 136 © EDF SA

/ 𝑑 ∶ ℰ × 𝒟 × ℝ+ ⟶ 𝒟

(𝜑 ↑, Ω, 𝑑) ⟼ 𝜑 ↑ 𝑑Ω⁄ ≔ {
 { Ω𝑖 = min

𝑗≥𝑖
(𝜑 ↑ + 𝑑 ≥ Ω𝑗 ≥ 𝜑 ↑) if ∃𝑘 such that 𝜑 ↑ + 𝑑 ≥ Ω𝑘 ≥ 𝜑 ↑ }

∅ if ∄𝑘 such that 𝜑 ↑ + 𝑑 ≥ Ω𝑘 ≥ 𝜑 ↑

(46)

The projection operator Ω1 𝑑Ω2⁄ of a discrete clock Ω1 on a discrete clock Ω2 is defined as follows:

/ 𝑑 ∶ 𝒟 × 𝒟 ⟶ 𝒟

(Ω1, Ω2) ⟼ Ω1 𝑑Ω2⁄ ∶= ⋃ Ω1
𝑖 𝑑Ω2⁄

|Ω1|
𝑖=1

 (47)

Fig. 21. Discrete clock bounded projection operator

The bounded projection 𝑡 𝑑Ω⁄ of a time instant 𝑡 ∈ ℭ on a discrete clock Ω is the first tick of Ω that
follows 𝑡 if it is delayed by at most 𝑑 ∈ ℭ from 𝑡. Otherwise, the projection is lost. It is formally defined
as follows:

/ ∶ 𝔈 × 𝒟 × ℝ+ ⟶ 𝒟

(𝑡, Ω, 𝑑) ⟼ 𝑡 𝑑Ω⁄ ≔ {
 { Ω𝑖 = min

𝑗≥𝑖
(𝑡 + 𝑑 ≥ @Ω𝑗 ≥ 𝑡) if ∃𝑘 such that 𝑡 + 𝑑 ≥ @Ω𝑘 ≥ 𝑡 }

∅ if ∄𝑘 such that 𝑡 + 𝑑 ≥ @Ω𝑘 ≥ 𝑡

 (48)

Fig. 22. Continuous clock bounded projection operator on a discrete clock

Note that 𝑑 is a function of time (it is not a fixed quantity).

d

2
1 2

2 2
4

1
1 1

3

1/d 2

2

1
2

2
3 2

5

1
1/d 2

1

1
3/d 2

d d d d

𝔈/d

1 2 4

3 5

𝔈
d d d d d

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 35 of 136 © EDF SA

3.7.3. Delay operator

The delay operator denoted + applied on tick Ω𝑖 of clock Ω delays Ω𝑖 by 𝑛 ticks. It is formally defined
as follows:

+: Ω × ℕ ⟶ Ω

(Ω𝑖 , 𝑛) ⟼ Ω𝑖 + 𝑛 ∶= Ω𝑖+𝑛 (49)

where 𝑛 ∈ ℕ is the delay expressed in number of ticks of Ω.

Note that tick Ω𝑖+𝑛 can never occur.

Fig. 23. Clock tick delay operator

The delay operator denoted + applied on clock Ω1(Ω1
𝑖) generates a second clock Ω2 whose ticks are

delayed by 𝑛 ticks of Ω1. It is formally defined as follows:

+: 𝒟 × ℕ ⟶ 𝒟

(Ω1(Ω1
𝑖), 𝑛) ⟼ Ω2 = Ω1 + 𝑛 ≔ { Ω1

𝑗
+ 𝑛, 𝑖 ≤ 𝑗 ≤ |Ω1| }

 (50)

where 𝑛 ∈ ℕ is the delay expressed in number of ticks of Ω1.

Fig. 24. Discrete clock delay operator

3.7.4. Elapsed operator

The elapsed operator denoted − applied on two ticks Ω𝑖 and Ω𝑗 of clock Ω, Ω𝑗 occurring after Ω𝑖, yields

the elapsed time (or delay) between Ω𝑖 and Ω𝑗. It is formally defined as follows:

−: Ω(Ω𝑖) × Ω(Ω𝑗) ⟶ ℕ such that 𝑗 ≥ 𝑖

(Ω𝑖 , Ω𝑗) ⟼ Ω𝑗 − Ω𝑖 ∶= 𝑗 − 𝑖
 (51)

Fig. 25. Discrete clock elapsed operator

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 36 of 136 © EDF SA

3.7.5. Conjunction operator

The conjunction operator ∧ applied on two clocks Ω1 and Ω2 yields a third clock Ω that contains all ticks

of Ω1 and Ω2 that are equal. It is formally defined as follows:

∧ : 𝒟 × 𝒟 ⟶ 𝒟

(Ω1, Ω2) ⟼ Ω = Ω1 ∧ Ω2 ≔ Ω1 ∩ Ω2
 (52)

Fig. 26. Discrete clock conjunction operator

3.7.6. Disjunction operator

The disjunction operator ∨ applied on two clocks Ω1 and Ω2 yields a third clock Ω that contains all ticks

of Ω1 and Ω2. It is formally defined as follows:

∨ : 𝒟 × 𝒟 ⟶ 𝒟

(Ω1, Ω2) ⟼ Ω = Ω1 ∨ Ω2 ≔ Ω1 ∪ Ω2
 (53)

Fig. 27. Discrete clock disjunction operator

3.7.7. Filter operator

The filter operator applied on clock Ω filters (i.e., removes) all ticks that do not satisfy a Boolean
condition. It is formally defined as follows:

filter: 𝒟 × 𝕆(Ω ⟶ 𝔹) ⟶ 𝒟

(Ω1, cond) ⟼ Ω2 = Ω1(cond(∗)) ≔ { Ω1
𝑖 ∈ Ω1 such that cond(Ω1

𝑖) = 𝑡𝑟𝑢𝑒 }
 (54)

where ∗ denotes a dummy variable that represent any element Ω1
𝑖 ∈ Ω1, and cond is a Boolean

condition on Ω1
𝑖 .

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 37 of 136 © EDF SA

Fig. 28. Discrete clock filter operator

3.7.8. Extending operators on a discrete clock to the continuous time domain

To be simulated, operators defined on a discrete clock must be extended to the continuous time
domain ℭ.

Let 𝑓(Ω) be a function that takes the clock Ω as argument:

𝑓: 𝒟 ⟶ 𝔻

 Ω ⟼ 𝑓(Ω)
 (55)

where 𝔻 can be any domain.

The extension 𝑓 ̅of 𝑓 to the continuous time domain ℭ is defined as follows:

[@Ω1, + [⟶ 𝔻

 𝑡 ⟼ 𝑓(̅𝑡) = {
𝑓(Ω𝑖) for @Ω𝑖 ≤ 𝑡 < @Ω𝑖+1 if 1 ≤ 𝑖 < |Ω|

𝑓(Ω|Ω|) for 𝑡 ≥ @|Ω|

 (56)

The definition given by Eq. (56) can be extended to functions 𝑓(Ω1, … , Ω𝑖 , … , Ω𝑛) defined on multiple

clocks Ω1, … Ω𝑖 , … Ω𝑛 as follows:

[@Ω1

1, + [× … × [@Ω𝑖
1, + [× … × [@Ω𝑛

1 , + [⟶ 𝔻

 (𝑡1, … 𝑡𝑖, … 𝑡𝑛) ⟼ 𝑓̅(𝑡1, … 𝑡𝑖, … 𝑡𝑛) = 𝑓 (Ω1
𝑗1 , … , Ω𝑖

𝑗𝑖 , … , Ω𝑛
𝑗𝑛) for @Ω𝑖

𝑗𝑖 ≤ 𝑡 < @Ω𝑖
𝑗𝑖+1

 (57)

with the convention that @Ω𝑖
𝑗𝑖+1

= + if 𝑗𝑖 = |Ω𝑖|. Note that 𝑓 ̅ is undefined until all clocks have their

first tick.

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 38 of 136 © EDF SA

Fig. 29. Extending operators on discrete clocks to the continuous time domain

3.8. Single time periods

A single time period 𝑃 is a time interval between two events 𝜑1 ↑ and 𝜑2 ↑. The left and right

boundaries can be included or excluded (this is indicated by the notation [|]).

 𝑃 ∶= [|] 𝜑1 ↑, 𝜑2 ↑ [|] (58)

𝜑1 ↑ is called the opening event. It is denoted 𝑃 ↑.

𝜑2 ↑ is called the closing event. It is denoted 𝑃 ↓.

Therefore, Eq. (58) can be rewritten as follows:

 𝑃 ∶= [|] 𝑃 ↑, 𝑃 ↓ [|] (59)

The domain of single time periods is denoted 𝒫.

Fig. 30. Single time period

3.9. Multiple time periods

A multiple time period 𝑃 is a set of single time periods 𝑃𝑖 ordered by opening events increasing in time:

 𝑃 ∶= { 𝑃1, 𝑃2, … , 𝑃𝑖 , … } such that ∀𝑖, ∀𝑗, 𝑗 > 𝑖 ⇒ 𝑃𝑗 ↑ ≥ 𝑃𝑖 ↑ (60)

Multiple time periods 𝑃 containing single time periods opened at all occurrences of 𝜑1 ↑ and closed at

f()

1 2 3 4 5 6 7

f̅()

ϕ1 ϕ2

ϕ

P P

true

false

false,
undecided,
undefined

P

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 39 of 136 © EDF SA

all occurrences of 𝜑2 ↑ are denoted

 𝑃 ∶= Π([|] 𝜑1 ↑, 𝜑2 ↑ [|]) (61)

Fig. 31. Multiple time period

The domain of multiple time periods is denoted 2𝒫.

A non-overlapping time period 𝑃 is a multiple time period such that there is no time overlaps between

the single time periods 𝑃𝑖 of the multiple time period 𝑃. It is formally defined as follows:

 𝑃 ∶= { 𝑃1, 𝑃2, … , 𝑃𝑖 , … } such that ∀𝑖 ∈ [1, |𝑃| − 1], 𝑃𝑖 ↓ < 𝑃𝑖+1 ↑ (62)

The non-overlapping time period 𝑃(𝜓) generated by the Boolean 𝜓 is defined as:

 𝑃(𝜓) ∶= Π([|] 𝜓 ↑, 𝜓 ↓ [|]) (63)

where 𝜓 ↓ ∶= ¬𝜓 ↑.

Fig. 32. Non-overlapping time period

Fig. 33. Reduced graphical representation of a non-overlapping time period

ϕ1 ϕ1 ϕ1 ϕ2

P1

P2

P3

ϕ2

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 40 of 136 © EDF SA

Fig. 34. Non-overlapping time period generated by a Boolean

3.10. Operators on multiple time periods

3.10.1. Intersection operator

The intersection operator between two single time periods 𝑃1 and 𝑃2 produces a multiple time period 𝑃

that contains a single time period made of all time instants common to 𝑃1 and 𝑃2. It is formally defined
as follows:

∩ : 𝒫 × 𝒫 ⟶ 2𝒫

 (𝑃1, 𝑃2) ⟼ 𝑃 = 𝑃1 ∩ 𝑃2 ∶= {
{[max(𝑃1 ↑, 𝑃2 ↑) , min (𝑃1 ↓, 𝑃2 ↓)]} if max(𝑃1 ↑, 𝑃2 ↑) ≤ min (𝑃1 ↓, 𝑃2 ↓)

∅ if max(𝑃1 ↑, 𝑃2 ↑) > min (𝑃1 ↓, 𝑃2 ↓)

(64)

 𝑃1 ∩ 𝑃2 is a multiple time period which can be empty or contains one single time period. Therefore:

 0 ≤ |𝑃1 ∩ 𝑃2| ≤ 1 (65)

3.10.2. Truncation operator

The truncation operator between a non-overlapping multiple time period 𝑃1 = {𝑃1,𝑖} 1≤𝑖≤|𝑃1|
 and a

multiple time period 𝑃2 = {𝑃1,𝑗}
 1≤𝑗≤|𝑃2|

 produces a multiple time period 𝑃 = {𝑃𝑘} 1≤𝑘≤|𝑃| such that all its

single time periods 𝑃𝑘 are the single time periods 𝑃2,𝑗 of 𝑃2 truncated by the single time periods 𝑃1,𝑖 of

𝑃1. It is formally defined as follows:

⊃ : 2𝒫 × 2𝒫 ⟶ 2𝒫

 (𝑃1, 𝑃2) ⟼ 𝑃 = 𝑃1 ⊃ 𝑃2 ∶= ⋃ 𝑃1,𝑖 ∩ 𝑃2,𝑗 1≤𝑖≤|𝑃1|,1≤𝑗≤|𝑃2|
 (66)

From Eq. (66), in general:

 0 ≤ |𝑃1 ⊃ 𝑃2| ≤ |𝑃1||𝑃2| (67)

The non-overlapping time period 𝑃1 such that 𝑃1 ⊃ 𝑃2 is called the frame time period of 𝑃2.

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 41 of 136 © EDF SA

Fig. 35. Truncation of a multiple time period

3.11. Temporal operators on Booleans

3.11.1. Accumulation operator

The accumulation operator, denoted +, is applied on two different values of the same Boolean 𝜑 at

two different instants 𝑡1 and 𝑡2:

+: 𝔹 × 𝔹 ⟶ 𝔹

(𝜑(𝑡1), 𝜑(𝑡2)) ⟼ 𝜑(𝑡1) + 𝜑(𝑡2) (68)

The values of the accumulation operator are given by the following truth table:

Table 5. Truth table for the Boolean accumulation operator

+ Accumulation operator

𝝋(𝒕𝟏) + 𝝋(𝒕𝟐) true false undecided undefined

true true false true true

false false false false false

undecided true false undecided undecided

undefined true false undecided undefined

The purpose of the accumulation operator is to define the policy of requirement satisfaction (cf.
Section 3.12).

The accumulation operator verifies the following properties:

• Commutativity: 𝜑(𝑡1) + 𝜑(𝑡2) = 𝜑(𝑡2) + 𝜑(𝑡1)

• Associativity: (𝜑(𝑡1) + 𝜑(𝑡2)) + 𝜑(𝑡3) = 𝜑(𝑡1) + (𝜑(𝑡2) + 𝜑(𝑡3))

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 42 of 136 © EDF SA

• Idempotence: 𝜑(𝑡) + 𝜑(𝑡) = 𝜑(𝑡)

3.11.2. Filter operator

The filter operator is formally defined as follows:

× : 𝔹 × 𝔹 ⟶ 𝔹
(𝑎, 𝜑) ⟼ 𝑎 × 𝜑

 (69)

where 𝑎 and 𝜑 are two Booleans at the same instant in time. 𝑎 is the filter.

The truth table of the filter operator is given below.

Table 6. Truth table for the Boolean filter operator

× Filter operator

𝒂 × 𝝋 true false undecided undefined

true true false undecided undefined

false undecided undecided undecided undefined

undecided undecided undecided undecided undefined

undefined undefined undefined undefined undefined

The purpose of the filter operator is to filter out events that are not decision events.

3.11.3.Duration operator

The duration of a Boolean 𝜑 over a single time period 𝑃 is the elapsed time while 𝜑 equals true inside

𝑃. It is formally defined as follows:

duration: 𝔹 × 𝒫 ⟶ ℝ+

(𝜑, 𝑃) ⟼ duration(𝜑, 𝑃) ≔ ∫ ⟦𝜑⟧ 𝑑𝑡

𝑡∈𝑃

 (70)

where ⟦ ⟧ is the indicator function:

⟦ ⟧: 𝔹 ⟶ {0, 1}

𝜑 ⟼ ⟦𝜑⟧ = {
1 if 𝜑 = 𝑡𝑟𝑢𝑒
0 if 𝜑 ≠ 𝑡𝑟𝑢𝑒

 (71)

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 43 of 136 © EDF SA

Fig. 36. Boolean duration operator

3.11.4. Delay operator

The delay operator applied on Boolean 𝜑1 generates a second Boolean 𝜑2 as formally defined below:

+: 𝔹 × ℝ+ ⟶ 𝔹

(𝜑1, 𝑑) ⟼ 𝜑2 = (𝜑1 + 𝑑)(𝑡) ∶= 𝜑1(𝑡 − 𝑑)
 (72)

where 𝑑 ∈ ℝ+ is the delay or elapsed time between 𝜑1 and 𝜑2.

Fig. 37. Boolean delay operator

3.11.5. Sum operator

The sum operator of Boolean 𝜑 over the single time period 𝑃 is formally defined for a discrete clock Ω
as follows:

∑ : 𝔹 × 𝒫 × 𝒟 ⟶ 𝔹

(𝜑, 𝑃, Ω) ⟼ ∑ 𝜑𝑃,Ω ∶= {
𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 if Ω = ∅

 ∑ 𝜑(@Ω|Ω|) @Ω|Ω|∈𝑃 if Ω ≠ ∅
 (73)

where ∑ 𝜑(@Ω|Ω|)@Ω|Ω|∈𝑃 = 𝜑(𝑡1) + ⋯ + 𝜑(𝑡𝑖) + ⋯ is an accumulator that accumulates the values of

𝜑(𝑡𝑖) such that 𝑡𝑖 = @Ω|Ω| and 𝑡𝑖 ∈ 𝑃. Its value is 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 when the accumulator is empty, and

varies at each time instant 𝑡𝑖 ∈ 𝑃 when |Ω| increases by one unit.

The term undefined is introduced to provide a value to the sum even if there are no ticks of Ω within 𝑃.

Therefore, the value of the sum is undefined if there are no ticks of Ω within 𝑃, and the sum has a

value for any value of 𝑡 ∈ ℭ.

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 44 of 136 © EDF SA

Fig. 38. Sum operator

3.11.6. Integral operator

Let us consider a Boolean 𝜑(𝑡) ∈ 𝔹 which is a function of time 𝑡 ∈ ℭ (like any other variable). Let us

consider the single time period 𝑃, a time quantum 𝑑𝑡 ∈ ℝ∗+ and the discrete clock Ω such that

 Ω ≠ ∅ ⟹ Ω1 = 𝑃 ↑ and ∀𝑖 ∈ [1, |Ω| − 1], Ω𝑖+1 = Ω𝑖 + 𝑑𝑡 (74)

Then the integral operator of 𝜑(𝜏) over the single time period 𝑃 is formally defined as follows:

∫ : 𝔹 × 𝒫 ⟶ 𝔹

(𝜑, 𝑃) ⟼ ∫ 𝜑

𝑃
∶= lim

𝑑𝑡→0
∑ 𝜑𝑃,Ω

 (75)

It corresponds to the extension of the definition of the sum operator for the continuous clock ℭ. The

integral operator sums 𝜑 at any time instant 𝑡 ∈ 𝑃. Before 𝑃 ↑, ∫ 𝜑

𝑃
= 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑. Note that the value

of ∫ 𝜑

𝑃
 varies in time between 𝑃 ↑ and 𝑃 ↓, and stays constant after 𝑃 ↓.

3.12. Requirements

3.12.1. Definition

A requirement 𝑅 corresponding to a Boolean 𝜑 associated to a single time period 𝑃 is denoted 𝑅 =
𝜑 ⊗ {𝑃} and formally defined as the following function:

⊗ : 𝔹 × 𝒫 ⟶ 𝔹

(𝜑, 𝑃) ⟼ 𝜑 ⊗ {𝑃} ∶= ∫ 𝑎(𝜑, 𝑃) × 𝜑

𝑃

 (76)

The filter 𝑎(𝜑, 𝑃) ∈ 𝔹 depends on 𝜑 ∈ 𝔹 and 𝑃 ∈ 𝒫. 𝑅 = 𝜑 ⊗ 𝑃 varies with time 𝑡 ∈ ℭ when 𝑡 ≤ 𝑃 ↓

and stays constant for 𝑡 > 𝑃 ↓.

A decision event is an event that occurs when the decision whether 𝑅 is satisfied or not can be made,
cf. Section 3.12.3. The decision events for condition 𝜑 ∈ 𝔹 and single time period 𝑃 ∈ 𝒫 constitute a

clock whose ticks are denoted dev(𝜑, 𝑃) ↑. Then

 dev(𝜑, 𝑃) ↑ = (𝑎(𝜑, 𝑃) × 𝜑 ∨ ¬(𝑎(𝜑, 𝑃) × 𝜑)) ↑ (77)

Eq. (77) states that decision events occur when 𝑎(𝜑, 𝑃) × 𝜑 becomes true or false.

1 2 3 4 5 6 7

undefined

undecided

true

false

true true

ϕ (1)

ϕ (2) ϕ (3)

ϕ (4) ϕ (5)
ϕ (6) ϕ (7)

ϕ(@i)

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 45 of 136 © EDF SA

In principle, the value 𝜑 ⊗ 𝑃 should be the same at all decision events, but there may be some
situations where the value of 𝜑 ⊗ 𝑃 can differ from one decision event to the other. If the decision over

the satisfaction of 𝜑 ⊗ 𝑃 is final at the first decision event (i.e., is not reversed at the next decision
event):

 ∀𝑡 ≥ @(dev(𝜑, 𝑃) ↑)1, 𝜑 ⊗ 𝑃(𝑡) = 𝜑 ⊗ 𝑃 (@(dev(𝜑, 𝑃) ↑)1) (78)

A requirement 𝑅 corresponding to a Boolean 𝜑 associated to a multiple time period 𝑃 = {𝑃1, 𝑃2, … , 𝑃|𝑃|}

is denoted 𝑅 = 𝜑 ⊗ 𝑃 and formally defined as the following function:

⊗ : 𝔹 × 2𝒫 ⟶ 𝔹

(𝜑, 𝑃) ⟼ 𝜑 ⊗ 𝑃 ∶= ⋀ 𝜑 ⊗ {𝑃𝑖}|𝑃|
𝑖=1 = 𝜑 ⊗ {𝑃1} ∧ 𝜑 ⊗ {𝑃2} ∧ … ∧ 𝜑 ⊗ {𝑃|𝑃|}

 (79)

𝜑 ∈ 𝔹 is called the condition of the requirement.

𝑃 ∈ 2𝒫 is called the time period of the requirement (the term ‘multiple’ is eventually dropped as all time
periods of requirement are considered to be multiple time periods, even if the multiple time period
contains only one single time period, i.e. if |𝑃| = 1).

𝑅(𝜑, 𝑃) = 𝜑 ⊗ 𝑃 ∈ 𝔹 is called the value of the requirement. It depends on time 𝑡 ∈ ℭ.

The multiple time period 𝑃 associated with 𝑅 = 𝜑 ⊗ 𝑃 is denoted ⊗ 𝑅. Similarly, the condition 𝜑

associated with 𝑅 = 𝜑 ⊗ 𝑃 is denoted 𝑅 ⊗. Thus, 𝑃 = ⊗ 𝑅, 𝜑 = 𝑅 ⊗ and 𝑅 = 𝑅 ⊗⊗ 𝑅.

The filter 𝑎(𝜑, 𝑃) filters out the events of 𝜑 which are not decision events and ensures that the closing
event of 𝑃 is always a decision event if 𝜑 ∈ 𝔹2. The filter is composed of two terms, one that depends

only on 𝜑 and the other that depends only on 𝑃:

𝑎: 𝔹 × 𝒫 ⟶ 𝔹

𝑎(𝜑, 𝑃) = 𝑎′(𝜑) ∨ 𝑃 ↓
 (80)

dev′(𝜑, 𝑃) ↑ = (𝑎′(𝜑, 𝑃) × 𝜑 ∨ ¬(𝑎′(𝜑, 𝑃) × 𝜑)) ↑ is called the early decision event because if it occurs,

it occurs before 𝑃 ↓.

There is no general algorithm for computing 𝑎′(𝜑) from the condition 𝜑, but a general procedure to

write 𝑎′(𝜑) is given in Section 3.19. Therefore, 𝑎′(𝜑) must be given together with 𝜑. Examples of 𝑎′(𝜑)

are 𝑎′(𝜑) = 𝜑, 𝑎′(𝜑) = ¬𝜑, 𝑎′(𝜑) = 𝑡𝑟𝑢𝑒 or 𝑎′(𝜑) = 𝑓𝑎𝑙𝑠𝑒. If 𝑎′(𝜑) = 𝜑, then the requirement is
satisfied as soon as the condition 𝜑 is true. If 𝑎′(𝜑) = ¬𝜑, then the requirement is violated as soon as

the condition 𝜑 is true. If 𝑎′(𝜑) = 𝑡𝑟𝑢𝑒, then all events generated by 𝜑 can be considered as decision

events: as soon as 𝜑 becomes true or false, the decision is made. If 𝑎′(𝜑) = 𝑓𝑎𝑙𝑠𝑒, then no event

generated by 𝜑 can be considered as decision event: the decision can only be made at the end of 𝑃.

If at the end of a single time period 𝑃, 𝑎′(𝜑) ∈ 𝔹2, then 𝑎(𝜑, 𝑃) ∈ 𝔹2.If in addition 𝜑 ∈ 𝔹2, then 𝜑 ⊗
𝑃 ∈ 𝔹2:

 𝑎′(𝜑(@𝑃 ↓)) ∈ 𝔹2 and 𝜑(@𝑃 ↓) ∈ 𝔹2 ⟹ 𝜑 ⊗ 𝑃 ∈ 𝔹2 (81)

Example 1 with 𝑎′(𝜑) = ¬𝜑. Let us consider a requirement 𝑅 = 𝜑 ⊗ 𝑃 that specifies that the number

of events generated by a Boolean 𝜓 inside 𝑃 must be less than a given number 𝑁.

The number of events of 𝜓 inside 𝑃 is given by:

count: 𝔹 × 𝒫 ⟶ ℕ

count (𝜓, 𝑃) = |{(𝜓 ↑)𝑖 such that 𝑃 ↑≤ (𝜓 ↑)𝑖 ≤ P ↓, 𝑖 ∈ [1, |𝜓 ↑|]}|
 (82)

The condition 𝜑 is given by:

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 46 of 136 © EDF SA

 𝜑 = (count (𝜓, 𝑃) ≤ 𝑁) (83)

where 𝑁 ∈ ℕ is a constant.

Then 𝑎′(𝜑) = ¬𝜑 because the decision that the requirement is not satisfied can be made as soon as

count(𝜓, 𝑃) > 𝑁. 𝜑 ∈ 𝔹2 ⟹ 𝑎′(𝜑) ∈ 𝔹2. Because Eq. (81) is satisfied, the value of 𝜑 ⊗ 𝑃 is true or
false (it cannot be undecided or undefined).

Fig. 39. Example 1 with the decision event inside the time period

0
count(,P)

1
2

3
4

5

P

true
falseϕ = (count(,P) 3)

false
true

a(ϕ,P) = ϕP↓

a(ϕ,P) x ϕ

P↑ P↓

undecided
false

undecided

false

D
ec

is
io

n
 e

ve
n

t

undefined

 ↑

(↑)1 (↑)2 (↑)3 (↑)4 (↑)5 (↑)6 (↑)7

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 47 of 136 © EDF SA

Fig. 40. Example 1 with the decision event at the end of the time period

The domain of requirements is denoted ℛ.

3.12.2. Composition of requirements with logical operators

The composition of a requirement 𝑅 = 𝜑⨂𝑃 with a unary logical operator 𝑜𝑝 is given by:

𝑜𝑝: ℛ ⟶ 𝔹
𝑅 ⟼ 𝑜𝑝 𝑅

 (84)

where 𝑜𝑝 denotes any logical unary operator (¬ …).

The composition of two requirements 𝑅1 = 𝜑1⨂𝑃1 and 𝑅2 = 𝜑2⨂𝑃2 with a binary logical operator 𝑜𝑝 is
given by:

𝑜𝑝: ℛ × ℛ ⟶ 𝔹

(𝑅1, 𝑅2) ⟼ 𝑅1 𝑜𝑝 𝑅2
 (85)

where 𝑜𝑝 denotes any binary logical operator (∧, ∨, ⊕, ⟹, …).

𝑅 = 𝑅1 𝑜𝑝 𝑅2 does not satisfy the definition of requirements given by Eq. (79), because two time
periods being involved (one for 𝑅1 and the other for 𝑅2) that cannot be combined into one, it does not

belong to 𝔹 × 2𝒫 (it belongs to 𝔹). 𝑅 will be called a composed requirement, or somewhat imprecisely
but more conveniently, a requirement when there is no ambiguity to do so.

The composition of multiple requirements follows the same rule:

ℛ𝑛 ⟶ 𝔹

(𝑅1, 𝑅2, … , 𝑅𝑛) ⟼ 𝑅1 𝑜𝑝1 𝑅2 … 𝑜𝑝𝑛−1 𝑅𝑛
 (86)

where 𝑜𝑝1 … 𝑜𝑝𝑛−1 denote any logical binary operators (∧, ∨, ⊕, ⟹, …).

 ↑
(↑)1

0
count(,P)

1
2

3
4

5

P

true
ϕ = (count(,P) 5)

false
a(ϕ,P) = ϕP↓

a(ϕ,P) x ϕ

P↑ P↓

undecided

ϕ P =∫a(ϕ,P) x ϕ

undecided
true

D
ec

is
io

n
 e

ve
n

t

undefined

true

true

(↑)2 (↑)3 (↑)4 (↑)5 (↑)6 (↑)7

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 48 of 136 © EDF SA

Note that in general,

 𝑡 ∈ [𝑃 ↑, 𝑃 ↓[⇏ (𝜑1 𝑜𝑝 𝜑2) ⊗ 𝑃 = 𝜑1 ⊗ 𝑃 𝑜𝑝 𝜑2 ⊗ 𝑃 (87)

although there are cases where (𝜑1 𝑜𝑝 𝜑2) ⊗ 𝑃 = 𝜑1 ⊗ 𝑃 𝑜𝑝 𝜑2 ⊗ 𝑃 holds within [𝑃 ↑, 𝑃 ↓[,
depending on the logical operator 𝑜𝑝.

However,

 𝑡 ∉ [𝑃 ↑, 𝑃 ↓[⟹ (𝜑1 𝑜𝑝 𝜑2) ⊗ 𝑃 = 𝜑1 ⊗ 𝑃 𝑜𝑝 𝜑2 ⊗ 𝑃 (88)

Example 1: ∀𝑡, (count (𝜓, 𝑃) = 𝑁) ⊗ 𝑃 = ((count (𝜓, 𝑃) ≤ 𝑁) ∧ (count (𝜓, 𝑃) ≥ 𝑁)) ⊗ 𝑃

Fig. 41. Example 1 with N = 5

Example 2: (count (𝜓, 𝑃) ≥ 𝑁) ⊗ 𝑃 ≠ ((count (𝜓, 𝑃) > 𝑁) ∨ (count (𝜓, 𝑃) = 𝑁)) ⊗ 𝑃 within 𝑃

 ↑
(↑)1

0
count(,P)

1
2

3
4

5

P

(count(,P) 5) P

P↑ P↓
(↑)2 (↑)3 (↑)4 (↑)5 (↑)6 (↑)7

true

(count(,P) 5) P
undefined

undecided

true

(count(,P) 5) P (count(,P) 5) P
undefined

undecided

undefined

undecided

true

true

(count(,P) = 5) P
undefined

undecided

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 49 of 136 © EDF SA

Fig. 42. Example 2 with N = 5

3.12.3. Satisfaction of requirements

A requirement 𝑅 = 𝜑⨂𝑃 is satisfied iff 𝜑⨂𝑃 = 𝑡𝑟𝑢𝑒 at the decision event dev(𝜑, 𝑃) ↑. The satisfaction

of 𝑅 = 𝜑⨂𝑃 is denoted 𝑃 ⊨ 𝜑 which means that condition 𝜑 is satisfied over time period 𝑃:

⊨ : 2𝒫 × 𝔹 ⟶ 𝔹2

(𝑃, 𝜑) ⟼ 𝑃 ⊨ 𝜑 ∶= (𝜑⨂𝑃)(@dev(𝜑, 𝑃) ↑) = 𝑡𝑟𝑢𝑒)
 (89)

Because 𝜑 = 𝑅 ⊗ and 𝑃 = ⊗ 𝑅, the satisfaction of 𝑅 can be denoted ⊗ 𝑅 ⊨ 𝑅 ⊗.

From Eq. (89), 𝑃 ⊨ 𝜑 is a 2-valued Boolean:

• If 𝑅 = 𝜑⨂𝑃 is satisfied, then (𝜑⨂𝑃)(@dev(𝜑, 𝑃) ↑) = 𝑡𝑟𝑢𝑒) and 𝑃 ⊨ 𝜑 = 𝑡𝑟𝑢𝑒.

• If 𝑅 = 𝜑⨂𝑃 is not satisfied, then (𝜑⨂𝑃)(@dev(𝜑, 𝑃) ↑) = 𝑓𝑎𝑙𝑠𝑒) and 𝑃 ⊨ 𝜑 = 𝑓𝑎𝑙𝑠𝑒.

Therefore

𝑃 ⊨ 𝜑 = (𝜑⨂𝑃)(@dev(𝜑, 𝑃) ↑)

The value of (𝜑⨂𝑃)(𝑡) is:

 (𝜑⨂𝑃)(𝑡) = {

 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 if 𝑡 < @𝑃1 ↑

𝑢𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 if @𝑃1 ↑≤ 𝑡 < @dev(𝜑, 𝑃) ↑

𝑃 ⊨ 𝜑 if 𝑡 ≥ @dev(𝜑, 𝑃) ↑

 (90)

with 𝑃 = {𝑃1, 𝑃2, … , 𝑃|𝑃|}.

3.12.4. Applying frame time periods to requirements

Applying the frame time period 𝑀 to requirement 𝑅 = 𝜑⨂𝑃 consists in applying 𝑀 to 𝑃. It is formally
defined as:

 ↑
(↑)1

0
count(,P)

1
2

3
4

5

P

(count(,P) > 5) P

P↑ P↓
(↑)2 (↑)3 (↑)4 (↑)5 (↑)6 (↑)7

true

(count(,P) = 5) P
undefined

undecided

true

(count(,P) > 5) P (count(,P) = 5) P
undefined

undecided

undefined

undecided

false

true

(count(,P) 5) P
undefined

undecided

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 50 of 136 © EDF SA

⊃ : 2𝒫 × ℛ ⟶ ℛ

(𝑀, 𝑅) ⟶ 𝑀 ⊃ 𝑅 ∶= 𝜑⨂(𝑀 ⊃ 𝑃)
 (91)

3.12.5. Simulating requirements

The continuous time domain ℭ spans from − ∞ to + ∞. However, the simulation time window spans

from 𝑡0 to 𝑡𝑓.

Therefore, the user must ensure that all events to be verified occur between 𝑡0 and 𝑡𝑓, excluding 𝑡0

and 𝑡𝑓 because the behavior of the simulator is uncertain at instant time 𝑡 ≤ 𝑡0 and instant time 𝑡 ≥ 𝑡𝑓.

This can be done by encapsulating all events in a single frame time period, that defines the beginning
and the end of the experiment.

According to Eq. (90), before the beginning of the frame time period, all requirements are evaluated to
undefined: testing has not started. After the end of the frame time period, all requirements are
evaluated in general to true or false, and sometimes to undecided. If some requirements are still
undefined, that means that not all events are within the frame time period and testing is incomplete. If
some requirements are still undecided, it means that not all events are within the frame time period
and testing is incomplete, or more rarely that decisions could not be made due to uncertainties on
thresholds.

Fig. 43. Frame time period to define the simulation period

3.13. Stochastic requirements

The satisfaction 𝑥 of requirement 𝑅 = 𝜑⨂𝑃 is defined as 𝑥 = 𝑃 ⊨ 𝜑, cf. Eq. (89). 𝑥 is a 2-valued

Boolean that takes the value 𝑡𝑟𝑢𝑒 if 𝑅 is satisfied, or 𝑓𝑎𝑙𝑠𝑒 otherwise.

A realistic requirement cannot be satisfied with absolute certainty. To that end, the satisfaction of a
probabilistic requirement 𝑅 is defined as a condition to be satisfied on the probability 𝑝 that 𝑥 = 𝑡𝑟𝑢𝑒,

e.g. 𝑝 ≥ 99.9%, or 𝑝 ≥ 𝑓(𝑡) where 𝑓(𝑡) is a function of time.

Then 𝑥 ∈ 𝔹2 is replaced by a random variable 𝑋 that associates probabilistic events to the outcomes

𝑡𝑟𝑢𝑒 or 𝑓𝑎𝑙𝑠𝑒:

 𝑋: Ω ⟶ 𝔹2 (92)

where Ω denotes the domain of probabilistic events. Ω is the randomized version of domain 2𝒫 × 𝔹.

Examples of probabilistic events can be whether a tank level subject to random fluctuations exceeds a
maximum level within a given time period, or whether a system goes out of its authorized operating
domain according to measurements subject to random errors.

The probability that 𝑋 takes the value 𝑥 ∈ 𝔹2 at time 𝑡 is denoted ℙ(𝑋 = 𝑥|𝑡). If time 𝑡 is the instant of

occurrence of an event 𝑏 ↑, i.e. if 𝑡 = @𝑏 ↑, then the probability that 𝑋 takes the value 𝑥 ∈ 𝔹2 when

event 𝑏 ↑ occurs is denoted ℙ(𝑋 = 𝑥|𝑏 ↑) (it can also be denoted ℙ(𝑋 = 𝑥|@𝑏 ↑)). The Boolean 𝑏 that

triggers the event 𝑏 ↑ can itself be the outcome of a random variable 𝐵.

The probability that requirement 𝑅 = 𝜑⨂𝑃 is satisfied is then ℙ(𝑋 = 𝑡𝑟𝑢𝑒|dev(𝜑, 𝑃) ↑), the outcomes of

𝑋 being 𝑥 = 𝑃 ⊨ 𝜑.

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 51 of 136 © EDF SA

We are now interested in computing 𝑝 = ℙ(𝑋 = 𝑡𝑟𝑢𝑒|𝑡). This equivalent to writing 𝑝 = 𝔼(⟦𝑋 = 𝑡𝑟𝑢𝑒⟧|𝑡)

where ⟦∙⟧ is the indicator function:

⟦𝑥⟧ = {
1 if 𝑥 = 𝑡𝑟𝑢𝑒

 0 if 𝑥 = 𝑓𝑎𝑙𝑠𝑒

𝑋 is a Bernoulli distributed random variable:

ℙ(𝑋 = 𝑥|𝑡) = {
𝑝 if ⟦𝑥⟧ = 1

1 − 𝑝 if ⟦𝑥⟧ = 0

or equivalently

ℙ(𝑋 = 𝑥|𝑡) = 𝑝⟦𝑥⟧ ∙ (1 − 𝑝)1−⟦𝑥⟧, 𝑥 ∈ {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}

An estimate �̂� of 𝑝 is given by an estimate �̂�𝑋 of 𝜇𝑋 = 𝔼(⟦𝑋 = 𝑡𝑟𝑢𝑒⟧|𝑡). An estimate of the error on �̂�𝑋

is given by an estimate �̂�𝑋
2 of 𝜎𝑋

2 = 𝕍ar[⟦𝑋 = 𝑡𝑟𝑢𝑒⟧|𝑡] = 𝔼[(⟦𝑋 = 𝑡𝑟𝑢𝑒⟧|𝑡)2] − 𝔼[⟦𝑋 = 𝑡𝑟𝑢𝑒⟧|𝑡]2.

For a normally distributed variable 𝑋~𝒩(𝜇𝑋, 𝜎𝑋
2), there is 95% probability that the true value 𝑝 = 𝜇𝑋 lies

in the uncertainty range [�̂�𝑋 − 𝜆95% ∙ 𝜎𝑋, �̂�𝑋 + 𝜆95% ∙ 𝜎𝑋], with 𝜆95% = 1.96 (but we only have an estimate

�̂�𝑋 of 𝜎𝑋, which implies some uncertainty on the uncertainty range which is not computed).

The estimator �̂�𝑋 is given by

 �̂�𝑋 =
1

𝑛
∙ ∑ 𝑦𝑖

𝑛
𝑖=1 (93)

where 𝑦𝑖 = ⟦𝑥𝑖⟧, 𝑥𝑖 being the outcome of 𝑋 in the ith Monte Carlo simulation of 𝑅, and where 𝑛 is the
number of simulations.

The estimator �̂�𝑋
2 is given by:

 �̂�𝑋
2 =

1

𝑛−1
∙ ∑ (𝑦𝑖 − �̂�𝑋)2𝑛

𝑖=1 (94)

Because Monte Carlo simulations generate random deviates from the same distribution, 𝔼[𝑦𝑖] = 𝜇𝑋

and 𝕍ar[𝑦𝑖] = 𝜎𝑋
2 for all 𝑦𝑖.

Then, Eq. (93) is an unbiased estimator because

𝔼[�̂�𝑋] =
1

𝑛
∙ ∑ 𝔼[𝑦𝑖]

𝑛

𝑖=1

=
1

𝑛
∙ ∑ 𝜇𝑋

𝑛

𝑖=1

= 𝜇𝑋

Because the generated deviates are independent, ℂov[𝑦𝑖 , 𝑦𝑗] = 𝔼[𝑦𝑖 ∙ 𝑦𝑗] − 𝔼[𝑦𝑖] ∙ 𝔼[𝑦𝑗] = 0 for 𝑖 ≠ 𝑗,

which implies that 𝔼[𝑦𝑖 ∙ 𝑦𝑗] = 𝜇𝑋
2 for all 𝑦𝑖 and 𝑦𝑗 such that 𝑖 ≠ 𝑗.

Then, Eq. (94) is an unbiased estimator because

𝔼[�̂�𝑋
2] =

1

𝑛 − 1
∙ 𝔼 [∑ (𝑦𝑖 −

1

𝑛
∙ ∑ 𝑦𝑖

𝑛

𝑖=1

)

2𝑛

𝑖=1

]

=
1

𝑛 − 1
∙ 𝔼 [∑ (𝑦𝑖

2 −
2

𝑛
∙ 𝑦𝑖 ∙ ∑ 𝑦𝑗

𝑛

𝑗=1

+
1

𝑛2
∙ (∑ 𝑦𝑖

𝑛

𝑖=1

)

2

)

𝑛

𝑖=1

]

=
1

𝑛 − 1
∙ 𝔼 [∑ 𝑦𝑖

2

𝑛

𝑖=1

−
2

𝑛
∙ ∑ 𝑦𝑗

𝑛

𝑗=1

∙ ∑ 𝑦𝑖

𝑛

𝑖=1

+ 𝑛 ∙
1

𝑛2
∙ (∑ 𝑦𝑖

𝑛

𝑖=1

)

2

]

=
1

𝑛 − 1
∙ 𝔼 [∑ 𝑦𝑖

2

𝑛

𝑖=1

−
2

𝑛
∙ ∑ 𝑦𝑗

𝑛

𝑗=1

∙ ∑ 𝑦𝑘

𝑛

𝑘=1

+
1

𝑛
∙ ∑ 𝑦𝑗

𝑛

𝑗=1

∙ ∑ 𝑦𝑘

𝑛

𝑘=1

]

=
1

𝑛 − 1
∙ 𝔼 [∑ 𝑦𝑖

2

𝑛

𝑖=1

−
1

𝑛
∙ ∑ 𝑦𝑗

𝑛

𝑗=1

∙ ∑ 𝑦𝑘

𝑛

𝑘=1

]

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 52 of 136 © EDF SA

=
1

𝑛 − 1
∙ 𝔼 [(1 −

1

𝑛
) ∙ ∑ 𝑦𝑖

2

𝑛

𝑖=1

−
1

𝑛
∙ ∑ 𝑦𝑗 ∙ 𝑦𝑘

𝑗≠𝑘

]

=
1

𝑛 − 1
∙ ((1 −

1

𝑛
) ∙ ∑ 𝔼[𝑦𝑖

2]

𝑛

𝑖=1

−
1

𝑛
∙ ∑ 𝔼[𝑦𝑗 ∙ 𝑦𝑘]

𝑗≠𝑘

)

=
1

𝑛 − 1
∙ ((1 −

1

𝑛
) ∙ 𝑛 ∙ (𝜎𝑋

2 + 𝜇𝑋
2) −

1

𝑛
∙ (𝑛2 − 𝑛) ∙ 𝜇𝑋

2)

= 𝜎𝑋
2

�̂�𝑋 and �̂�𝑋
2 are not defined for 𝑛 ≤ 1.

We are now interested in assessing the number of 𝑛 of simulations to compute the estimator �̂�𝑋.

According to the central limit theorem applied to Eq. (93),

lim
𝑛→∞

�̂�𝑋 = lim
𝑛→∞

1

𝑛
∙ ∑ 𝑦𝑖

𝑛

𝑖=1

~𝒩 (𝜇𝑋,
𝜎𝑋

√𝑛
)

where 𝜎𝑋
2 = 𝜇𝑋 ∙ (1 − 𝜇𝑋) is the variance of the Bernoulli distribution.

Because �̂�𝑋~𝒩 (𝜇𝑋,
𝜎𝑋

√𝑛
) for 𝑛 sufficiently large,

ℙ (|�̂�𝑋 − 𝜇𝑋| < 𝜆95% ∙
𝜎𝑋

√𝑛
) = 95%

Then

ℙ (|�̂�𝑋 − 𝜇𝑋| < 𝜆95% ∙ √
𝜇𝑋 ∙ (1 − 𝜇𝑋)

𝑛
) = 95%

which yields the 95% probability confidence range for �̂�𝑋 for 𝑛 sufficiently large.

We are now interested in assessing a condition for the value of 𝑛. When dealing with the satisfaction
of requirements, the expected probability 𝜇𝑋 is close to 1, or equivalently, 1 − 𝜇𝑋 is small (close to

zero). The precision of the computation of the confidence range should increase when 1 − 𝜇𝑋

decreases. For small values of 1 − 𝜇𝑋, the maximum relative precision error 𝜀 of the estimator �̂�𝑋 is

defined such that |�̂�𝑋 − 𝜇𝑋| (1 − 𝜇𝑋)⁄ < 𝜀.

Then, the condition giving the confidence range for the estimator is satisfied with precision 𝜀 if

𝜆95% ∙
1

1 − 𝜇𝑋

∙ √
𝜇𝑋 ∙ (1 − 𝜇𝑋)

𝑛
< 𝜀

Consequently, 𝑛 is given by the condition

𝑛 >
𝜆95%

2

𝜀2
∙

𝜇𝑋

1 − 𝜇𝑋

For instance, computing an estimator for an almost sure event of expected probability 𝜇𝑋~1 − 10−3

requires 𝑛~3.84 ∙ 105 simulations to be in the 95% confidence range with relative precision error 𝜀 =
10%.

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 53 of 136 © EDF SA

3.14. Domains

3.14.1. Definition

A domain is a finite or infinite set of elements of the same kind.

List of domains:

• 𝔗: type definitions

• ℭ: continuous clock

• ℕ: natural numbers (positive integers including zero)

• ℤ: positive or negative integers

• ℝ: real numbers

• ℂ: complex numbers

• 𝔹2: 2-valued Booleans { true, false }

• 𝔹3: 3-valued Booleans { true, false, undecided }

• 𝔹3
′ : 3-valued Booleans { true, false, undefined }

• 𝔹, 𝔹4: 4-valued Booleans { true, false, undecided, undefined }

• 𝕊: character strings

• ℰ: events

• 2ℰ, 𝒟: discrete clocks

• 𝒫: single time periods

• 2𝒫: multiple time periods

• ℛ: requirements. ℛ = 𝔹 × 2𝒫 ⟶ 𝔹

• 𝕆(𝔻1 ⟶ 𝔻2): operators from 𝔻1 to 𝔻2

• 𝒞(𝔻1 ⟶ 𝔻2): categories from 𝔻1 to 𝔻2

• 𝒮: sets

• 𝒞: class definitions

• 𝒞𝐶: class 𝐶

• 2𝒞𝐶: sets of objects of class 𝐶

• ℳ: models

• ℒ: librairies

• 𝒯: packages

Any domain is denoted 𝔻.

To emphasize that 𝑥 ∈ 𝔻, 𝑥 can be denoted 𝔻: 𝑥.

The domain of 𝑥 is denoted domain(𝑥). Thus domain(𝔻: 𝑥) = 𝔻.

3.14.2. Domain extensions

Existing domains can be extended to create new domains. For instance, ℝ can be extended to define
the domain of physical quantities.

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 54 of 136 © EDF SA

A domain 𝔻′ that extends domain 𝔻 is denoted 𝔻′ ⊂ 𝔻 because if 𝑥 is an element of 𝔻′, then it is an

element of 𝔻.

 𝑥 ∈ 𝔻′ and 𝔻′ ⊂ 𝔻 ⟹ 𝑥 ∈ 𝔻 (95)

A domain 𝔻′′ that extends a domain 𝔻′ ⊂ 𝔻 also extends 𝔻:

 𝔻′′ ⊂ 𝔻′ and 𝔻′ ⊂ 𝔻 ⟹ 𝔻′′ ⊂ 𝔻 (96)

If 𝔻′ extends 𝔻, then all operators on 𝔻 can be applied on 𝔻′, unless specified otherwise (e.g., it is not
possible to add or multiply temperatures which are quantities that extend real numbers).

An operator 𝑜𝑝 defined on 𝔻 and forbidden on 𝔻′ is denoted 𝑜𝑝 ∉ 𝕆(𝔻′ ⟶∗).

Then:

 𝑜𝑝 ∈ 𝕆(𝔻 ⟶∗) and 𝔻′ ⊂ 𝔻 ⟹ 𝑜𝑝 ∈ 𝕆(𝔻′ ⟶∗) (97)

unless it is specified that 𝑜𝑝 ∉ 𝕆(𝔻′ ⟶∗).

The definition �̂�′ of the extension 𝔻′ of a domain 𝔻 is given as follows:

 �̂�′ = 𝔻: 𝑧(𝑎1, … 𝑎𝑖 , … 𝑎𝑛) + {𝔻1: 𝑎1, … 𝔻𝑖: 𝑎𝑖 , … 𝔻𝑛: 𝑎𝑛} (98)

where the 𝑎𝑖 denote the attributes of �̂�′. 𝑧 is a variable of domain 𝔻 that represents the definition of
the variables of domain 𝔻′ as a function of the attributes 𝑎𝑖. If no such function is necessary for the

definition (i.e., if 𝑧 has the same definition in 𝔻 and 𝔻′), then it can be omitted. Therefore �̂�′ = 𝔻: 𝑧 ⟺
�̂�′ = 𝔻. In the following, when there is no confusion between �̂�′, the definition of the domain, and 𝔻′,
the domain itself, the hat above the name of the domain will be omitted.

Example 1: defining the domain ℤ 𝑛ℤ⁄ of residual integers 𝑟 modulo 𝑛.

ℤ𝑛 = ℤ: 𝑟 = 𝑝 mod 𝑛 + {ℤ: 𝑝, ℤ: 𝑛}

In this example, 𝑟 is a dummy variable that represents any element of ℤ𝑛. 𝑟 is an integer that is

computed from 𝑝 and 𝑛: 𝑟 is equal to 𝑝 modulo 𝑛.

For instance, for 𝑛 = 7 and 𝑝 = 22, 𝑟 = 1.

𝔻′′ can in tun extend 𝔻′:

 𝔻′′ = 𝔻′: 𝑧(𝑎1, … 𝑎𝑖 , … 𝑎𝑛 , 𝑎1
′ , … 𝑎𝑖

′, … 𝑎𝑛′
′) + {𝔻1: 𝑎1

′ , … 𝔻𝑖: 𝑎𝑖
′, … 𝔻𝑛′: 𝑎𝑛′

′ } (99)

where the 𝑎𝑖
′ denote the additional attributes of 𝔻′′. 𝑧 represents the variable of 𝔻′ that is a function of

the attributes 𝑎𝑖 and 𝑎𝑖
′.

However, a domain 𝔻 cannot extend two different domains 𝔻1 and 𝔻2:

 𝔻 ⊂ 𝔻1 and 𝔻 ⊂ 𝔻2 ⟹ 𝔻1 = 𝔻2 (100)

A variable 𝑥 ∈ 𝔻′ is obtained by assigning values to the attributes 𝑎𝑖, hence yielding a value for 𝑧:

 𝔻′: 𝑥 = 𝑧(𝑎𝑖 = 𝑣𝑖 , 𝑖 ∈ [1, 𝑛]) (101)

Example 2: finding the residual of 22 modulo 7

ℤ𝑛: 𝑟(𝑝 = 22, 𝑛 = 7)

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 55 of 136 © EDF SA

3.14.3. Domain specializations

A domain 𝒟 can specialize another domain 𝔻′ that extends a domain 𝔻 by assigning fixed values to

some attributes of 𝔻′:

 𝒟 = 𝔻′(𝑎𝑖 = 𝑣𝑖 , 𝑖 ∈ 𝐹 ⊂ [1, 𝑛]) (102)

where 𝐹 denotes the indices of the fixed attributes.

Example 1: defining the domain of integer residuals modulo 7

ℤ7 = ℤ𝑛(𝑛 = 7)

𝒟 specializes 𝔻′ is denoted 𝒟 ≺ 𝔻′. Then a variable 𝑥 ∈ 𝒟 is obtained by assigning values to the

remaining non-fixed attributes 𝑎𝑖 ∈ �̅� = [1, 𝑛] − 𝐹:

 𝒟: 𝑥(𝑎𝑖 = 𝑣𝑖 , 𝑖 ∈ �̅� = [1, 𝑛] − 𝐹) (103)

Example 2: finding the residual of 22 modulo 7

ℤ7: 𝑟(𝑝 = 22)

A domain 𝒟′ can in turn specialize 𝒟 by assigning fixed values to some non-fixed attributes of 𝒟.

 𝒟′ = 𝒟(𝑎𝑖 = 𝑣𝑖 , 𝑖 ∈ 𝐹′ ⊂ �̅�) (104)

where 𝐹′ denotes the indices of the fixed attributes.

Then a variable 𝑥 ∈ 𝒟′ is obtained by assigning values to the remaining non-fixed attributes 𝑎𝑖 ∈ 𝐹 ′̅ =
�̅� − 𝐹′:

 𝒟′: 𝑥(𝑎𝑖 = 𝑣𝑖 , 𝑖 ∈ 𝐹 ′̅ = �̅� − 𝐹′) (105)

If there is only one free attribute left, i.e. if |𝐹 ′̅| = 1, then it is also possible to write without ambiguity

 𝒟′: 𝑥 = 𝑣 (106)

to assign a value to 𝑥.

Example 3: finding the residual of 22 modulo 7 can be written

ℤ7: 𝑟 = 22

because 𝑝 is the only attribute in ℤ7.

If there are no free attribute left, i.e. if |𝐹 ′̅| = 0, then 𝒟′ contains a single element.

Example 4: ℤ7:21 = ℤ7(𝑝 = 21) has no attribute. It is the domain that contains the single integer {1}.

A domain 𝒟′′ that specializes domain 𝒟′ ≺ 𝔻′ extends 𝔻′:

 𝒟′′ ≺ 𝒟′and 𝒟′ ≺ 𝔻′ ⟹ 𝒟′′ ⊂ 𝔻′ (107)

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 56 of 136 © EDF SA

If a domain 𝒟(𝑠) with an alias 𝑠 specializes a domain 𝔻′, then any variable 𝑥 ∈ 𝒟(𝑠) can be denoted
𝔻′: 𝑥 𝑠. The alias 𝑠 must be unique for domain 𝔻′ which means that two domains 𝒟1(𝑠1) and 𝒟2(𝑠2)

that extend the same domain 𝔻′ must have different aliases 𝑠1 and 𝑠2.

 𝒟1(𝑠1) ⊂ 𝔻′ and 𝒟2(𝑠2) ⊂ 𝔻′ ⟹ 𝑠1 ≠ 𝑠2 (108)

This feature is used to express physical units outside of the domain name.

3.14.4. Partial domains

A partial domain 𝔻 is a domain that cannot have any elements because it is incompletely defined. It is

then expected that its definition will be completed by extending or specializing 𝔻. A partial domain 𝔻 is

denoted partial 𝔻. Then:

 partial 𝔻 ⟹ 𝔻 = ∅ (109)

3.14.5. Domain aliases

An alias 𝑠 ∈ 𝕊 can be associated to a domain 𝔻. This is denoted 𝔻(𝑠). Then 𝑥 ∈ 𝔻(𝑠) can be denoted

𝑥 𝑠. In other words, 𝑥 𝑠 has the same meaning as 𝔻(𝑠): 𝑥.

If a domain 𝔻′(𝑠) with an alias 𝑠 extends or specializes a domain 𝔻, then any variable 𝑥 ∈ 𝔻′(𝑠) can

be denoted 𝔻: 𝑥 𝑠. The alias 𝑠 must be unique for any domain extension or specialization 𝔻′ of

domain 𝔻 which means that two domains 𝔻1
′ (𝑠1) and 𝔻2

′ (𝑠2) that extend or specialize the same

domain 𝔻 must have different aliases 𝑠1 and 𝑠2.

 (𝔻1
′ (𝑠1) ⊂ 𝔻 or 𝔻1

′ (𝑠1) ≺ 𝔻) and (𝔻2
′ (𝑠2) ⊂ 𝔻 or 𝔻2

′ (𝑠2) ≺ 𝔻) ⟹ 𝑠1 ≠ 𝑠2 (110)

This feature is used to express physical units outside of the domain name.

Example 1: defining the domain 𝒬 of physical quantities in SI units by extending ℝ.

 partial 𝒬 = (ℝ: 𝑞 = 𝑟 × 𝑢 + 𝑜) + {𝕊: 𝑆𝐼𝑈𝑛𝑖𝑡, 𝕊: 𝑢𝑠𝑒𝑟𝑈𝑛𝑖𝑡, ℝ: 𝑢, ℝ: 𝑟, ℝ: 𝑜} (111)

where 𝑆𝐼𝑈𝑛𝑖𝑡 is the SI unit for quantity 𝑞, 𝑢𝑠𝑒𝑟𝑈𝑛𝑖𝑡 is the user unit for quantity 𝑞, 𝑞 is the quantity
expressed in SI units, 𝑢 is the quantity expressed in user units, 𝑟 is the rate and 𝑜 is the offset to
convert the user unit into the SI unit. Partial indicates that this domain must be extended or
specialized.

Example 2: defining physical units by specializing the domain of physical quantities 𝒬.

The domain of pressures is obtained by specializing domain 𝒬:

 partial Pressure = 𝒬(𝑆𝐼𝑈𝑛𝑖𝑡 = "Pa") (112)

The domain of pressures with user units in bars is obtained by specializing domain Pressure:

 PressureBar(bar) = Pressure(𝑢𝑠𝑒𝑟𝑈𝑛𝑖𝑡 = "bar", 𝑟 = 105, 𝑜 = 0) (113)

Then a pressure of 3 bars can be expressed as PressureBar: 𝑃(𝑢 = 3), PressureBar: 𝑃 = 3 or, more

conveniently, as Pressure: 𝑃 = 3 bar (or even ℝ: 𝑃 = 3 bar). Note that the word bar is written without
quotes because it cannot be confounded with the name of a variable.

The domain of pressures with user units in Pa is obtained by another specialization of domain
Pressure:

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 57 of 136 © EDF SA

 PressurePa(Pa) = Pressure(𝑢𝑠𝑒𝑟𝑈𝑛𝑖𝑡 = "Pa", 𝑟 = 1, 𝑜 = 0) (114)

It then possible to write Pressure: 𝑃 = 3 bar + 10000 Pa. The conversion of 3 bar to SI units is made

automatically using 3 bar = 𝑟 × 𝑢 + 𝑜 = 105 × 3 + 0 = 3. 105 Pa. Then the value of 𝑃 is 𝑃 = 3 105 +
10000 = 3.1 105 Pa.

If one omits the unit when writing Pressure: 𝑃 = 3, then an error will be raised at variable definition time

because Pressure is a partial domain that cannot have any elements.

If one writes a wrong unit such as Pressure: 𝑃 = 3 s, or an unknown unit such as Pressure: 𝑃 = 3 sz,

then an error will be raised because neither s nor sz are aliases for Pressure.

The domain of absolute temperatures is obtained by specializing domain 𝒬:

 partial AbsoluteTemperature = 𝒬(𝑆𝐼𝑈𝑛𝑖𝑡 = "K") (115)

To express the fact that absolute temperatures cannot be added, one can state that the + operator
cannot be using on the AsoluteTemperature domain: + ∉ 𝕆(AsoluteTemperature ⟶∗). Then a special
domain should be created to express temperature differences that can be added to absolute
temperatures to produce another absolute temperature.

The domain of temperatures with user units in Celsius is obtained by specializing domain
Temperature:

 TemperatureCelsius(Celsius) = AbsoluteTemperature(𝑢𝑠𝑒𝑟𝑈𝑛𝑖𝑡 = "Celsius", 𝑟 = 1, 𝑜 = 273.15)(116)

Then a temperature of 20 Celsius can be expressed as TemperatureCelsius: 𝑡(𝑢 = 20),

TemperatureCelsius: 𝑡 = 20, AbsoluteTemperature: 𝑡 = 20 Celsius, ℝ: 𝑡 = 20 Celsius.

The domain of time is obtained by specializing domain 𝒬:

 partial Time = 𝒬(𝑆𝐼𝑈𝑛𝑖𝑡 = "s") (117)

The domain of time with user units in seconds is obtained by specializing domain Time:

 TimeSecond(s) = 𝒬(𝑢𝑠𝑒𝑟𝑈𝑛𝑖𝑡 = "s", 𝑟 = 1, 𝑜 = 0) (118)

Then a duration of 2 seconds can be expressed as TimeSecond: 𝑑(𝑢 = 2), TimeSecond: 𝑑 = 2,

Time: 𝑑 = 2 𝑠, ℝ: 𝑑 = 2 𝑠.

The domain of time with user units in hours is obtained by specializing domain Time:

 TimeHour(h) = Time(𝑢𝑠𝑒𝑟𝑈𝑛𝑖𝑡 = "h", 𝑟 = 3600, 𝑜 = 0) (119)

Then a duration of 2 hours can be expressed as TimeHour: 𝑑(𝑢 = 2), TimeHour: 𝑑 = 2, Time: 𝑑 = 2 h,

ℝ: 𝑑 = 2 × 3600 s, etc.

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 58 of 136 © EDF SA

3.15. Types

A type 𝕋 is defined as a domain 𝔻, a domain extension 𝔻′ ⊂ 𝔻, or a domain specialization 𝒟 ≺ 𝔻′.

As domain extensions and domain specializations can be considered as domains, the notion of type is
equivalent to the notion of domain. Therefore, the words ‘type’ and ‘domain’ are synonymous.

If 𝑥 ∈ 𝔻 then 𝑥 is of type 𝔻. This can be denoted 𝔻: 𝑥.

If 𝑥 is of type 𝔻′ and type 𝔻′ extends type 𝔻, then 𝑥 is also of type 𝔻:

 𝑥 ∈ 𝔻′ 𝑎𝑛𝑑 𝔻′ ⊂ 𝔻 ⟹ 𝑥 ∈ 𝔻 (120)

If 𝑥 is of type 𝒟 and type 𝒟 specializes 𝔻′, then 𝑥 is also of type 𝔻′:

 𝑥 ∈ 𝒟 and 𝒟 ≺ 𝔻′ ⟹ 𝑥 ∈ 𝔻′ (121)

The domain of types (the domains of domains) is denoted 𝔗.

3.16. Variables

A variable is an element that belongs to the following domains, or extension of the following domains:

• ℭ: continuous clock

• ℕ: natural numbers (positive integers)

• ℤ: positive or negative integers

• ℝ: real numbers

• ℂ: complex numbers

• 𝔹2: 2-valued Booleans { true, false }

• 𝔹3: 3-valued Booleans { true, false, undecided }

• 𝔹3
′ : 3-valued Booleans { true, false, undefined }

• 𝔹, 𝔹4: 4-valued Booleans { true, false, undecided, undefined }

• 𝕊: character strings

• ℰ: events

• 2ℰ, 𝒟: discrete clocks

• 𝒫: single time periods

• 2𝒫: multiple time periods

• ℛ: requirements. ℛ = 𝕆(𝔹 × 2𝒫 ⟶ 𝔹)

Any domain of variables is denoted 𝕍.

Any variable 𝑥 ∈ 𝕍 is a function of time 𝑡 ∈ ℭ: 𝕍: 𝑥 = 𝑥(ℭ: 𝑡).

A variable that keeps the same value at all time instants 𝑡 is called a fixed variable or a constant

variable: 𝑥 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

When time is implicit in an equation, it is always implied that the values of all variables 𝑥 are taken at

the same instant in time 𝑡 ∈ ℭ.

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 59 of 136 © EDF SA

Example 1:

 𝑥1 ∨ 𝑥2 ∶= ¬(¬𝑥1 ∧ ¬𝑥2)

means

 𝑥1(𝑡) ∨ 𝑥2(𝑡) ∶= ¬(¬𝑥1(𝑡) ∧ ¬𝑥2(𝑡)), 𝑡 ∈ ℭ

If the values of some variables are taken at different instants in time in an equation, then time is
explicit in the equation, but not necessarily in the time definition domain of the equation. It is then
implied that time belongs to the continuous clock ℭ.

Example 2:

 𝑥(𝑡2) − 𝑥(𝑡1) ∶= 𝑡2 − 𝑡1

means

 𝑥(𝑡2) − 𝑥(𝑡1) ∶= 𝑡2 − 𝑡1 , 𝑡1 ∈ ℭ, 𝑡2 ∈ ℭ

The fact that time 𝑡 belongs to a discrete clock Ω is denoted by 𝑡 ∈ Ω. This means that the projection

operator Ω⁄ defined in Eq. (43) must be applied to all time instants.

Example 3:

 𝑥1 ∨ 𝑥2 ∶= ¬(¬𝑥1 ∧ ¬𝑥2), 𝑡 ∈ Ω

means

 𝑥1(@ 𝑡 Ω⁄) ∨ 𝑥2(@ 𝑡 Ω⁄) ∶= ¬(¬𝑥1(@ 𝑡 Ω⁄) ∧ ¬𝑥2(@𝑡 Ω⁄)), 𝑡 ∈ ℭ

Example 4:

 𝑥(𝑡2) − 𝑥(𝑡1) ∶= 𝑡2 − 𝑡1, 𝑡1 ∈ Ω, 𝑡2 ∈ Ω

means

 𝑥(@ 𝑡2 Ω⁄) − 𝑥(@𝑡2 Ω⁄) ∶= @𝑡2 Ω⁄ − @𝑡1 Ω⁄ , 𝑡1 ∈ ℭ, 𝑡2 ∈ ℭ

3.17. Operators

An operator 𝑓 is a function between a source domain 𝔻1 × … × 𝔻𝑛 that can be composed of several

domains if 𝑛 ≥ 2 and a target domain 𝔻:

𝑓: 𝔻1 × … × 𝔻𝑛 ⟶ 𝔻

(𝑥1, … , 𝑥𝑛) ⟼ 𝑦 ∶= 𝑓(𝑥1, … , 𝑥𝑛)
 (122)

A unary operator 𝑜𝑝 is a function from 𝔻1 to 𝔻 (the source and the target can be different domains):

𝑜𝑝: 𝔻1 ⟶ 𝔻

𝑥 ⟼ 𝑦 ∶= 𝑜𝑝 𝑥
 (123)

A binary operator 𝑜𝑝 on domain 𝔻 is a function from 𝔻 × 𝔻 to 𝔻 (the sources and the target are the
same domain):

𝑜𝑝: 𝔻 × 𝔻 ⟶ 𝔻

(𝑥1, 𝑥2) ⟼ 𝑦 ∶= 𝑥1 𝑜𝑝 𝑥2
 (124)

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 60 of 136 © EDF SA

The domain of operators from 𝔻1 to 𝔻2 is denoted 𝕆(𝔻1 ⟶ 𝔻2).

The domain of operators from 𝔻1 to any domain is denoted 𝕆(𝔻1 ⟶∗).

The domain of operators from any domain to 𝔻2 is denoted 𝕆(∗ ⟶ 𝔻2).

The domain of operators from any domain to any domain is denoted 𝕆(∗ ⟶ ∗).

3.18. Templates

Templates are operators taking Booleans as arguments and Booleans as values:

 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒: 𝔹𝑛 ⟶ 𝔹 (125)

Example 1: mission change. If requirement 𝑅1 fails, then switch to 𝑅2: requirement 𝑅2 should be

satisfied at most one hour after 𝑅1 fails.

switch: 𝔹2 ⟶ 𝔹

switch(𝑅1, 𝑅2) ∶= 𝑅2 ⊗ [𝑅1 ↓, 𝑅1 ↓ +1ℎ]
 (126)

missionChange: 𝔹2 ⟶ 𝔹

missionChange(𝑅1, 𝑅2) ∶= ¬𝑅1 ⟹ switch(𝑅1, 𝑅2)
 (127)

Example 2: if mission change fails, then switch to requirement 𝑅3: requirement 𝑅3 should be satisfied

at most one hour after the switching to 𝑅2 fails

 ¬missionChange(𝑅1, 𝑅2) ⟹ missionChange(¬switch(𝑅1, 𝑅2), 𝑅3) (128)

Example 3: elicitation rule. if assumption 𝐴 is verified then 𝑅1 should be satisfied, else 𝑅2 should be
satisfied.

rule: ℛ × ℛ × ℛ ⟶ ℛ

rule(𝐴, 𝑅1, 𝑅2) ∶= (𝐴 ⟹ 𝑅1) ∧ (¬𝐴 ⟹ 𝑅2)
 (129)

Example 4: definition of the disjunction of requirements from the conjunction and negation of
requirements.

∨ : ℛ × ℛ ⟶ 𝔹

𝑅1 ∨ 𝑅2 ∶= ¬(¬𝑅1 ∧ ¬𝑅2) (130)

3.19. Categories

Categories are operators on operators. They are introduced to handle the computation of the filter
𝑎′(𝜑, 𝑃) in Eq. (80). They are formally defined as follows:

𝑐: 𝕆(𝔻1 ⟶ 𝔻2) ⟶ 𝕆(𝔻1 ⟶ 𝔻2)

 𝑓 ⟼ 𝑔 = 𝑐(𝑓)
 (131)

where 𝑓 and 𝑔 are operators

𝑓: 𝔻1 ⟶ 𝔻2

𝑔: 𝔻1 ⟶ 𝔻2

The domain of categories 𝑐 from 𝔻1 to 𝔻2 is denoted 𝒞(𝔻1 ⟶ 𝔻2). 𝒞(𝔻1 ⟶ 𝔻2) can be formally

defined as 𝒞(𝔻1 ⟶ 𝔻2) ≔ 𝕆(𝕆(𝔻1 ⟶ 𝔻2) ⟶ 𝕆(𝔻1 ⟶ 𝔻2))

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 61 of 136 © EDF SA

Let us consider two operators 𝑓 and 𝑔:

𝑓: 𝔻1 ⟶ 𝔻2
𝑔: 𝔻2 ⟶ 𝔻3

 (132)

and the category

𝑐: 𝕆(𝔻1 ⟶ 𝔻2) ⟶ 𝕆(𝔻1 ⟶ 𝔻2)

𝑓 ⟼ 𝑐(𝑓)
 (133)

Let us consider the operator

ℎ: 𝔻1 ⟶ 𝔻3
ℎ = 𝑔 ∘ 𝑐(𝑓)

 (134)

and the category

𝑐′: 𝕆(𝔻1 ⟶ 𝔻3) ⟶ 𝕆(𝔻1 ⟶ 𝔻3)

ℎ ⟼ 𝑐′(ℎ) = {
ℎ if 𝑐 ∈ 𝒞(ℎ)

𝑔 ∘ 𝑓 if 𝑐 ∉ 𝐶(ℎ)

 (135)

where ∘ denotes the composition of operators 𝑔 ∘ 𝑓(𝑥) = 𝑔(𝑓(𝑥)), and 𝒞(ℎ) denotes the set of

categories associated to operator ℎ. 𝑐′ is called the adjoint of 𝑐 and is denoted 𝑐′ = adj 𝑐.

Then, if a category 𝑐 is defined, the following procedure is applied:

1. The adjoint category adj 𝑐 is applied to all operators ℎ, whether 𝑐 ∈ 𝒞(ℎ) or 𝑐 ∉ 𝐶(ℎ).

2. If ℎ is of the form ℎ = 𝑔 ∘ 𝑐(𝑓), which means that category 𝑐 is used in the expression of ℎ,
then

a. If 𝑐 ∈ 𝒞(ℎ), then (adj 𝑐)(ℎ) = ℎ: the effect of 𝑐 on 𝑓 is left unchanged and adj 𝑐 has no

effect on ℎ.

b. If 𝑐 ∉ 𝐶(ℎ), then (adj 𝑐)(ℎ) = 𝑔 ∘ 𝑓: the effect of 𝑐 on 𝑓 is cancelled and adj 𝑐 has an

effect on ℎ.

3. If ℎ is not of the form ℎ = 𝑔 ∘ 𝑐(𝑓), which means that category 𝑐 is not used in the expression

of ℎ, then (adj 𝑐)(ℎ) = ℎ. adj 𝑐 has no effect on ℎ.

Then 𝑎′(𝜑) in Eq. (80) is obtained by:

1. Writing the condition 𝜑 as:

 𝜑 = 𝜆 ∘ 𝑐(𝜓) (136)

where 𝜆 and 𝜓 are conditions, and 𝑐 is a category that depends on some properties of the

condition 𝜑 (e.g., whether 𝜑 is monotonously increasing or decreasing in time). This allows to

encode in 𝜑 the properties of 𝜑 that are relevant to compute 𝑎′(𝜑).

2. Not associating the category 𝑐 to 𝜑:

 𝑐 ∉ 𝐶(𝜑) (137)

Then the introduction of 𝑐 in 𝜑 does not modify the value of 𝜑.

3. Writing 𝑎′(𝜑) as:

 𝑎′(𝜑) = 𝜑 (138)

Then 𝑎′(𝜑) is the condition 𝜑.

4. Associating the category 𝑐 to 𝑎′(𝜑):

 𝑐 ∈ 𝒞(𝑎′(𝜑)) (139)

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 62 of 136 © EDF SA

Then 𝑎′(𝜑) is the condition 𝜑 with the right properties to raise the proper decision events.

5. Applying the above procedure.

A category 𝑐 can be associated to several operators 𝑓𝑖. This is individually denoted 𝑐 ∈ 𝒞(𝑓𝑖) for each

𝑓𝑖, or collectively denoted 𝑐 ∈ ⋂{𝒞(𝑓𝑖)}1≤𝑖≤𝑛 for all 𝑓𝑖.

Several categories 𝑐𝑗 can be associated to the same operator 𝑓. This is individually denoted 𝑐𝑗 ∈ 𝒞(𝑓)

for each 𝑐𝑗, or collectively denoted ⋃{𝑐𝑗}
1≤𝑖≤𝑝

⊂ 𝒞(𝑓) for all 𝑐𝑗.

Several categories 𝑐𝑗 can be associated to several operators 𝑓𝑖. This is individually denoted 𝑐𝑗 ∈ 𝒞(𝑓𝑖)

for each couple (𝑐𝑗 , 𝑓𝑖), or collectively denoted ⋃{𝑐𝑗}
1≤𝑖≤𝑝

⊂ (⋂{𝒞(𝑓𝑖)}1≤𝑖≤𝑛) for all (𝑐𝑗 , 𝑓𝑖).

Example 1: Generalization of Example 1 in Section 3.12.1. 𝕆(ℕ2 ⟶ 𝔹) = { >, ≥, =, ≠, <, ≤ }

cat1: 𝕆(ℕ2 ⟶ 𝔹) ⟶ 𝕆(ℕ2 ⟶ 𝔹)
> ⟼ >
≥ ⟼ ≥
= ⟼ >
≠ ⟼ >
< ⟼ ≥
≤ ⟼ >

 (140)

Let us consider requirement 𝑅 = 𝜑 ⊗ 𝑃 with 𝜑(𝜓, 𝑃) = count (𝜓, 𝑃) 𝑜𝑝 𝑁, 𝜓 being a Boolean, 𝑁 being

a fixed integer and 𝑜𝑝 being one of the operators listed in Eq. (140).

Then 𝜑 is rewritten as

𝜑(𝜓, 𝑃) = count (𝜓, 𝑃) cat1(𝑜𝑝) 𝑁

Because cat1 is not associated with 𝜑, we have still 𝜑 = count (𝜓, 𝑃) 𝑜𝑝 𝑁, but because cat1 is

associated with 𝑎′(𝜑), we have 𝑎′(𝜑) = count (𝜓, 𝑃) cat1(𝑜𝑝) 𝑁 where the properties of 𝜑 for the

satisfaction of requirement 𝑅 is embedded in cat1(𝑜𝑝). Then for 𝑜𝑝 = ≤, the decision event is raised
when 𝑎′(𝜑) = count (𝜓, 𝑃) > 𝑁, therefore as soon as condition 𝜑 = count (𝜓, 𝑃) ≤ 𝑁 is violated. For

𝑜𝑝 = ≠, the decision event is raised when 𝑎′(𝜑) = count (𝜓, 𝑃) > 𝑁, therefore as soon as condition

𝜑 = count (𝜓, 𝑃) ≠ 𝑁 is satisfied again (𝜑 = count (𝜓, 𝑃) > 𝑁), after being violated (𝜑 =
(count (𝜓, 𝑃) = 𝑁)), and after being initially satisfied (𝜑 = count (𝜓, 𝑃) < 𝑁), as the initial value for
count (𝜓, 𝑃) is always zero. This exemplifies the difference between the satisfaction of condition 𝜑 and

the satisfaction of requirement 𝑅: the satisfaction of 𝜑 is different from the satisfaction of 𝑅 because

cat1(𝑜𝑝) ≠ 𝑜𝑝.

Example 2: 𝕆(𝔹 ⟶ 𝔹) = { id, false } where id is the identity function

id: 𝔹 ⟶ 𝔹

𝑥 ⟼ 𝑥
 (141)

and false is the constant function

false: 𝔹 ⟶ 𝔹

𝑥 ⟼ 𝑓𝑎𝑙𝑠𝑒
 (142)

cat2: 𝕆(𝔹 ⟶ 𝔹) ⟶ 𝕆(𝔹 ⟶ 𝔹)

id ⟼ 𝑓𝑎𝑙𝑠𝑒
 (143)

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 63 of 136 © EDF SA

Let us consider requirement 𝑅 = 𝜑 ⊗ 𝑃 with 𝜑(𝜓) = 𝜓, 𝜓 being a Boolean.

Then 𝜑 is written as

𝜑(𝜓) = cat2 (𝜓)

Because cat2 is not associated with 𝜑, 𝜑 = 𝜓, and because cat2 is associated with 𝑎′(𝜑), 𝑎′(𝜑) =
cat2 (𝜓) = 𝑓𝑎𝑙𝑠𝑒. Thus, no decision event is triggered by 𝜓 (or 𝜑), and the only decision event is the

closing of the single time period 𝑃: the decision whether 𝑅 is satisfied is made at the end of 𝑃, and 𝑅 is

always undecided within 𝑃 before the end of 𝑃.

Example 3: 𝕆(𝔹 ⟶ 𝔹) = { true, false, undecided, undefined }.

cat3: 𝕆(𝔹 ⟶ 𝔹) ⟶ 𝕆(𝔹 ⟶ 𝔹)
𝑡𝑟𝑢𝑒 ⟼ 𝑡𝑟𝑢𝑒
𝑓𝑎𝑙𝑠𝑒 ⟼ 𝑡𝑟𝑢𝑒

𝑢𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 ⟼ 𝑓𝑎𝑙𝑠𝑒
𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 ⟼ 𝑓𝑎𝑙𝑠𝑒

 (144)

Let us consider requirement 𝑅 = 𝜑 ⊗ 𝑃 with 𝜑(𝜓) = 𝜓, 𝜓 being a Boolean.

Then 𝜑 is written as

𝜑(𝜓) = cat3 (𝜓)

Because cat3 is not associated with 𝜑, 𝜑 = 𝜓, and because cat3 is associated with 𝑎′(𝜑), 𝑎′(𝜑) =
cat3 (𝜓). Thus, if 𝜑 ∈ 𝔹2 any value of 𝜓 (or 𝜑) generates a decision event, which means that decision

events occur as soon as 𝜓 (or 𝜑) becomes true or false. Therefore 𝑅 is always satisfied or violated

within or after 𝑃 and never undecided.

3.20. Sets

3.20.1. Definition

A set 𝑆 is a finite collection of elements 𝑒𝑖 of domains 𝔻𝑖:

 𝑆 = { 𝔻1: 𝑒1, … 𝔻𝑖𝑒𝑖, … 𝔻|𝑆|: 𝑒|𝑆| } (145)

where |𝑆| is the number of elements in 𝑆. The elements of the set can be separated using the comma
(,) or the semicolon (;).

There are no duplicates in a set: ∀𝑖, 𝑗 ∈ [1, |𝑆|], 𝑖 ≠ 𝑗 ⟹ 𝑒𝑖 ≠ 𝑒𝑗.

Two sets 𝑆1 = { 𝔻1,1: 𝑒1,1, … 𝔻1,𝑖𝑒1,𝑖, … 𝔻1,|𝑆1|: 𝑒1,|𝑆1| } and 𝑆2 = { 𝔻2,1: 𝑒2,1, … 𝔻2,𝑖𝑒2,𝑖 , … 𝔻2,|𝑆2|: 𝑒2,|𝑆2| } are

equal if they have the same elements, even if their elements are listed in different orders.

 𝑆1 = 𝑆2 ⟺ |𝑆1| = |𝑆2| and ∃ permutation 𝜎 such that ∀𝑖 ∈ [1, |𝑆1|] 𝑒1,𝜎(𝑖) = 𝑒2,𝑖 (146)

The number of elements |𝑆| of a set 𝑆 can be fixed or can vary in time. Typically, the number of
elements in sets of events or time periods vary in time.

The usual set operators, union (∪), intersection (∩), difference (−), subset of (⊂), superset of (⊃), etc.
can be applied to sets.

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 64 of 136 © EDF SA

The domain of sets is denoted 𝒮.

The set of subsets of 𝑆 = { 𝔻1: 𝑒1, … 𝔻𝑖: 𝑒𝑖 , … 𝔻|𝑆|: 𝑒|𝑆| } ∈ 𝒮 is denoted 2𝑆. Therefore 𝑆 ∈ 2𝑆 and 2𝑆 ⊂

2⋃ 𝔻𝑖
|𝑆|
𝑖=1 .

The flattening ⋓ 𝑆 of a set 𝑆 that contains subsets {𝑆𝑖}𝑖 that in turn contain subsets {𝑆𝑖,𝑗}
𝑗
, etc. is

defined as the set that contains all elements in set 𝑆, subsets {𝑆𝑖}𝑖, subsets {𝑆𝑖,𝑗}
𝑗
 brought up to the

level of set 𝑆.

Example 1: flattening of 𝑆 = {𝑒1, 𝑒2, {𝑒3, 𝑒4, {𝑒5, 𝑒6}}, {𝑒7, 𝑒8}, 𝑒9 }

⋓ 𝑆 = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6𝑒7, 𝑒8, 𝑒9}

3.20.2. Set namespace

Each element 𝑒𝑖 of a set 𝑆 = { 𝔻1: 𝑒1, … 𝔻𝑖 : 𝑒𝑖, … 𝔻|𝑆|: 𝑒|𝑆| } is given a name 𝑎𝑖 ∈ 𝕊 and possibly a value

𝑣𝑖 ∈ 𝔻𝑖: 𝑒𝑖 ≡ (𝑎𝑖 = 𝑣𝑖). Then

𝑆 = { 𝔻1: 𝑎1 = 𝑣1, … 𝔻𝑖 : 𝑎𝑖 = 𝑣𝑖 , … 𝔻|𝑆|: 𝑎|𝑆| = 𝑣|𝑆| }.

The names 𝑎𝑖 given to elements 𝑒𝑖 are unique within the namespace of 𝑆: ∀𝑖, 𝑗 ∈ [1, |𝑆|], 𝑖 ≠ 𝑗 ⟹ 𝑎𝑖 ≠
𝑎𝑗. Two different sets 𝑆 and 𝑆′ have different namespaces.

The value 𝑣𝑖 of element 𝑒𝑖 in set 𝑆 with name 𝑎𝑖 is denoted 𝑆. 𝑎𝑖: 𝑣𝑖 = 𝑆. 𝑎𝑖.

Let us consider two sets 𝑆1 = {𝔻1,𝑖: 𝑎1,𝑖 = 𝑣1,𝑖}1≤𝑖≤|𝑆1|
 and 𝑆2 = {𝔻2,𝑗: 𝑎2,𝑗 = 𝑣2,𝑗}

1≤𝑗≤|2|
.

Let set 𝒮1 = {𝑆1,𝑖}1≤𝑖≤𝑛1
 be the increasing ordered set of sets that contain 𝑆1: 𝑆1 ∈ 𝑆1,1 ∈ ⋯ ∈ 𝑆1,𝑛1

.

Therefore, 𝑆1 is in the namespace of 𝑆1,1, and each 𝑆1,𝑖 is in the namespace of 𝑆1,𝑖+1.

Let set 𝒮2 = {𝑆2,𝑗}
1≤𝑗≤𝑛2

 be the increasing ordered set of sets that contain 𝑆2: 𝑆2 ∈ 𝑆2,1 ∈ ⋯ ∈ 𝑆2,𝑛2
.

Therefore, 𝑆2 is in the namespace of 𝑆2,1, and each 𝑆2,j is in the namespace of 𝑆2,𝑗+1.

Let 𝑆 be the smallest set such that 𝑆 ∈ 𝒮1 ∩ 𝒮2.

If 𝑆 exists, then ∃ 𝑚2 ∈ [1, 𝑛2] 𝑠uch that 𝑆 = 𝑆2,𝑚2
. Then the value 𝑣1,𝑖 of an element 𝑒1,𝑖 of set 𝑆1 can be

set to the value of an element 𝑒2,𝑗 of set 𝑆2 by writing 𝑣1,𝑖 = 𝑆2,𝑚2
. 𝑆2,𝑚2−1

… 𝑆2,1. 𝑆2. 𝑎2,𝑗.

𝑆2,𝑚2
. 𝑆2,𝑚2−1

… 𝑆2,1 is called the relative path of element 𝑒2,𝑗 within the namespace of 𝑆.

If 𝑆 does not exist, then one assumes that there exists a universal set 𝒰 that contains all sets except

itself. Then the value 𝑣1,𝑖 of an element 𝑒1,𝑖 of set 𝑆1 can be set to the value of an element 𝑒2,𝑗 of set 𝑆2

by writing 𝑣1,𝑖 = 𝒰. 𝑆2,𝑛2
. 𝑆2,𝑛2−1

… 𝑆2,1. 𝑆2. 𝑎2,𝑗. 𝒰. 𝑆2,𝑛2
. 𝑆2,𝑛2−1

… 𝑆2,1 is called the absolute path of element

𝑒2,𝑗.

3.21. Operators on sets

3.21.1. Unary operators

Unary operators can be iteratively applied to all elements of a set 𝑆 in the following way.

Let us consider the left-hand unary operator 𝑜𝑝1:

𝑜𝑝1: 𝔻1 ⟶ 𝔻

𝑥 ⟼ 𝑜𝑝1 𝑥
 (147)

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 65 of 136 © EDF SA

Then, the operator 𝑜𝑝1 can be applied to set 𝑆 = {𝑒1, … 𝑒𝑖, … 𝑒|𝑆|} such that |𝑆| ≥ 1 as follows:

𝑜𝑝1: 2𝔻1 ⟶ 2𝔻

𝑆 ⟼ 𝑜𝑝1 𝑆 ∶= {𝑜𝑝1 𝑒1, … 𝑜𝑝1 𝑒𝑖 , … 𝑜𝑝1 𝑒|𝑆|}
 (148)

Let us consider the right-hand unary operator 𝑜𝑝1:

𝑜𝑝1: 𝔻1 ⟶ 𝔻

𝑥 ⟼ 𝑥 𝑜𝑝1
 (149)

Then, the operator 𝑜𝑝1 can be applied to set 𝑆 = {𝑒1, … 𝑒𝑖, … 𝑒|𝑆|} such that |𝑆| ≥ 1 as follows:

𝑜𝑝1: 2𝔻1 ⟶ 2𝔻

𝑆 ⟼ 𝑆 𝑜𝑝1 ∶= {𝑒1 𝑜𝑝1, … 𝑒𝑖 𝑜𝑝1, … 𝑒|𝑆| 𝑜𝑝1}
 (150)

Let us now consider the operator 𝑜𝑝2 with two arguments:

𝑜𝑝2: 𝔻1 × 𝔻2 ⟶ 𝔻
(𝑥1, 𝑥2) ⟼ 𝑥1 𝑜𝑝2 𝑥2

 (151)

Let us consider the left-hand unary operator 𝑜𝑝1 = 𝑥1 𝑜𝑝2:

𝑥1 𝑜𝑝2: 𝔻2 ⟶ 𝔻

𝑥2 ⟼ (𝑥1 𝑜𝑝2) 𝑥2 = 𝑥1 𝑜𝑝2 𝑥2
 (152)

Then 𝑜𝑝1 = 𝑥1 𝑜𝑝2 can be applied to set 𝑆 = {𝑒1, … 𝑒𝑖, … 𝑒|𝑆|} following the rule given by Eq. (148):

𝑥1 𝑜𝑝2: 2𝔻2 ⟶ 2𝔻

𝑆 ⟼ (𝑥1 𝑜𝑝2)𝑆 = 𝑥1 𝑜𝑝2 𝑆 = {𝑥1 𝑜𝑝2 𝑒1, … 𝑥1 𝑜𝑝2 𝑒𝑖, … 𝑥1 𝑜𝑝2 𝑒|𝑆|}
 (153)

Let us consider the right-hand unary operator 𝑜𝑝1 = 𝑜𝑝2 𝑥2:

𝑜𝑝2 𝑥2: 𝔻1 ⟶ 𝔻

𝑥1 ⟼ 𝑥1 (𝑜𝑝2 𝑥2) = 𝑥1 𝑜𝑝2 𝑥2
 (154)

Then 𝑜𝑝1 = 𝑜𝑝2 𝑥2 can be applied to set 𝑆 = {𝑒1, … 𝑒𝑖 , … 𝑒|𝑆|} following the rule given by Eq. (150):

𝑜𝑝2 𝑥2: 2𝔻1 ⟶ 2𝔻

𝑆 ⟼ 𝑆 (𝑜𝑝2 𝑥2) = 𝑆 𝑜𝑝2 𝑥2 = {𝑒1 𝑜𝑝2 𝑥2, … 𝑒𝑖 𝑜𝑝2 𝑥2, … 𝑒|𝑆| 𝑜𝑝2 𝑥2}
 (155)

It follows that unary operators 𝑜𝑝1: 𝔻1 ⟶ 𝔻 are extended in the following manner:

𝑜𝑝1 ∈ 𝕆(𝔻1 ⟶ 𝔻) ⟹ 𝑜𝑝1 ∈ 𝕆(2𝔻1 ⟶ 2𝔻)

 ⟹ 𝑜𝑝1 ∈ 𝕆(𝔻1 ∪ 2𝔻1 ⟶ 𝔻 ∪ 2𝔻)

⟹ 𝑜𝑝1 ∈ 𝕆(2𝔻1∪2𝔻1 ⟶ 2𝔻∪2𝔻
)

 ⟹ 𝑜𝑝1 ∈ 𝕆(𝔻1 ∪ 2𝔻1 ∪ 2𝔻1∪2𝔻1
⟶ 𝔻 ∪ 2𝔻 ∪ 2𝔻∪2𝔻

)
…

 (156)

Note that {𝑥𝑖}𝑖 𝑜𝑝2 {𝑦}𝑗 is ambiguous as it could mean either ({𝑥𝑖}𝑖 𝑜𝑝2) {𝑦}𝑗 or {𝑥𝑖}𝑖 (𝑜𝑝2 {𝑦}𝑗), and

that the two expressions are not equal:

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 66 of 136 © EDF SA

({𝑥𝑖}𝑖 𝑜𝑝2) {𝑦}𝑗 = {{𝑥𝑖}𝑖 𝑜𝑝2 𝑦𝑗}
𝑗

= {{𝑥𝑖 𝑜𝑝2 𝑦𝑗}
𝑖
}

𝑗

{𝑥𝑖}𝑖 (𝑜𝑝2 {𝑦}𝑗) = {𝑥𝑖 𝑜𝑝2 {𝑦}𝑗}
𝑖

= {{𝑥𝑖 𝑜𝑝2 𝑦𝑗}
𝑗
}

𝑖

} ⟹ ({𝑥𝑖}𝑖 𝑜𝑝2) {𝑦}𝑗 ≠ {𝑥𝑖}𝑖 (𝑜𝑝2 {𝑦}𝑗)

Example 1: negation of a set of requirements 𝑅 = {𝑅1, … 𝑅𝑖 , … 𝑅|𝑅|} ∈ 2ℛ:

 ¬𝑅 = {¬𝑅1, … ¬𝑅𝑖, … ¬𝑅|𝑅|} (157)

Example 2: frame period 𝑀 ∈ 2𝒫 applied to a set of requirements 𝑅 = {𝑅1, … 𝑅𝑖 , … 𝑅|𝑅|} ∈ 2ℛ:

 𝑀 ⊃ 𝑅 = {𝑀 ⊃ 𝑅1, … 𝑀 ⊃ 𝑅𝑖 , … 𝑀 ⊃ 𝑅|𝑅|} (158)

Example 3: same condition 𝜑 ∈ 𝔹 applied to a set of multiple time periods 𝑃 = {𝑃1, … 𝑃𝑖 , … 𝑃|𝑃|} ∈ 22𝒫
:

 𝜑 ⊗ 𝑃 = {𝜑 ⊗ 𝑃1, … 𝜑 ⊗ 𝑃𝑖 , … 𝜑 ⊗ 𝑃|𝑃|} (159)

Example 4: same multiple time period 𝑃 ∈ 2𝒫 applied to a set of conditions Φ = {𝜑1, … 𝜑𝑖 , … 𝜑|Φ|} ∈ 2𝔹:

 Φ ⊗ 𝑃 = {𝜑1 ⊗ 𝑃, … 𝜑𝑖 ⊗ 𝑃, … 𝜑|Φ| ⊗ 𝑃} (160)

Example 5: getting the values of same attribute 𝑎𝑖 for a set of objects 𝑆 = {𝑂1, … 𝑂𝑖 , … 𝑂|𝑆|} ∈ 2𝒞𝑂 with

𝒞𝑂 = {𝔻1: 𝑎1, … 𝔻𝑖 : 𝑎𝑖 , … 𝔻𝑛: 𝑎𝑛}:

 S. 𝑎𝑖 = {𝑂1 . 𝑎𝑖 , … 𝑂𝑖 . 𝑎𝑖 , … 𝑂|𝑆|. 𝑎𝑖} (161)

Example 6: negation of a set containing requirements and sets of requirements:

𝑅 = {𝑅1, 𝑅2, {𝑅3, 𝑅4}, {𝑅5, 𝑅6}}

 ¬𝑅 = {¬𝑅1, ¬𝑅2, ¬{𝑅3, 𝑅4}, ¬{𝑅5, ¬𝑅6}} = {¬𝑅1, ¬𝑅2, {¬𝑅3, ¬𝑅4}, {¬𝑅5, ¬𝑅6}} (162)

3.21.2. Binary operators

Binary operators can be iteratively applied to all elements of a set 𝑆 in the following way.

Let us consider the binary operator 𝑜𝑝2:

𝑜𝑝2: 𝔻 × 𝔻 ⟶ 𝔻

(𝑥1, 𝑥2) ⟼ 𝑥1 𝑜𝑝2 𝑥2
 (163)

Then, the operator 𝑜𝑝2 can be applied to set 𝑆 = {𝑒1, … 𝑒𝑖, … 𝑒|𝑆|} such that |𝑆| ≥ 2 as follows:

𝑜𝑝2: 2𝔻 ⟶ 𝔻

𝑆 ⟼ 𝑜𝑝2 𝑆 ∶= 𝑒1 𝑜𝑝2 𝑒2 … 𝑜𝑝2 𝑒𝑖 … 𝑜𝑝2 𝑒|𝑆|
 (164)

From Eq. (163) and (164), it follows that binary operators 𝑜𝑝2: 𝔻 × 𝔻 ⟶ 𝔻 are extended in the
following manner:

𝑜𝑝2 ∈ 𝕆(𝔻 × 𝔻 ⟶ 𝔻) ⟹ 𝑜𝑝2 ∈ 𝕆(2𝔻 ⟶ 𝔻)

 ⟹ 𝑜𝑝2 ∈ 𝕆((𝔻 × 𝔻) ∪ 2𝔻 ⟶ 𝔻)
 (165)

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 67 of 136 © EDF SA

Because 𝔻 × 𝔻 and 2𝔻 involve different number of arguments (or because 𝔻 × 2𝔻 ⊄ (𝔻 × 𝔻) ∪ 2𝔻) it

is not possible to mix elements and sets of elements with binary operators. Then 𝑥 𝑜𝑝2 {𝑦}𝑗 means

necessarily (𝑥 𝑜𝑝2) {𝑦}𝑗 (indeed, it cannot mean 𝑥 (𝑜𝑝2 {𝑦}𝑗) because 𝑥 (𝑜𝑝2 {𝑦}𝑗) =

𝑥 (𝑦1 𝑜𝑝2 𝑦2 … 𝑜𝑝2 𝑦𝑛) is meaningless). However, 𝑥 𝑜𝑝2 𝑜𝑝2 {𝑦}𝑗 makes sense because

𝑥 𝑜𝑝2 𝑜𝑝2 {𝑦}𝑗 = (𝑥 𝑜𝑝2) (𝑜𝑝2 {𝑦}𝑗) = (𝑥 𝑜𝑝2) (𝑦1 𝑜𝑝2 𝑦2 … 𝑜𝑝2 𝑦𝑛) = 𝑥 𝑜𝑝2 𝑦1 𝑜𝑝2 𝑦2 … 𝑜𝑝2 𝑦𝑛.

Example 1: conjunction of a set of requirements 𝑅 = {𝑅1, … 𝑅𝑖 , … 𝑅|𝑅|} ∈ 2ℛ:

 ∧ 𝑅 = 𝑅1 ∧ 𝑅2 … ∧ 𝑅𝑖 … ∧ 𝑅|𝑅| (166)

Example 2: inference chain of a set of requirements 𝑅 = {𝑅1, … 𝑅𝑖, … 𝑅|𝑅|} ∈ 2ℛ:

 ⇒ 𝑅 = 𝑅1 ⇒ 𝑅2 … ⇒ 𝑅𝑖 … ⇒ 𝑅|𝑅| (167)

3.21.3.Filter operator

Let us consider a set 𝑆 of elements 𝑒𝑖 of the same type 𝔻:

 𝑆 = { 𝔻: 𝑒1, … 𝔻: 𝑒𝑖 , … 𝔻: 𝑒|𝑆| } (168)

A filter on 𝑆 is defined as the following function:

filter: 2𝔻 × 𝕆(𝔻 ⟶ 𝔹) ⟶ 2𝔻

(𝑆, cond) ⟼ 𝑆(cond(∗)) = { 𝑒𝑖 ∈ 𝑆 such that cond(𝑒𝑖) = 𝑡𝑟𝑢𝑒 }
 (169)

where 𝑐𝑜𝑛𝑑 is a Boolean condition on each element 𝑒𝑖 and ∗ denotes a dummy variable that

represents any element 𝑒𝑖 of 𝑆:

cond: 𝔻 ⟶ 𝔹
𝑒 ⟼ cond(𝑒)

 (170)

Example 1: all pumps that are started and close to their nominal regime.

Let us consider the class Pump defined by Eq. (189) and the following set of pumps:

𝑃𝑢𝑚𝑝𝑠 = { Pump: 𝑃1, Pump: 𝑃2, Pump: 𝑃3, Pump: 𝑃4 }

Then the set of pumps that are started and close to their nominal regime is:

 𝑃𝑢𝑚𝑝𝑠𝐼𝑛𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑃𝑢𝑚𝑝𝑠(∗. 𝑠 = 𝑡𝑟𝑢𝑒 ∧ ∗. 𝜂 > 0.90) (171)

Example 2: all even ticks of a clock Ω (cf. also Eq. (54)).

 𝐸𝑣𝑒𝑛𝑇𝑖𝑐𝑘𝑠 = Ω(rank(∗) = 0 mod 2) (172)

Example 3: all ticks of a clock Ω that occur after time t:

 𝐹𝑢𝑡𝑢𝑟𝑒𝑇𝑖𝑐𝑘𝑠 = Ω(@ ∗ ≥ 𝑡) (173)

Example 4: all requirements of a set of requirements 𝑅 that are satisfied.

 𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 = 𝑅(⊗∗⊨∗⊗) (174)

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 68 of 136 © EDF SA

Example 5: requirement satisfaction for all elements in a set of requirements 𝑅.

 𝐴𝑙𝑙𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 = ∧ 𝑅(⊗∗⊨∗⊗) (175)

Example 6: requirement satisfaction for at least one element in a set of requirements 𝑅.

 𝐴𝑡𝐿𝑒𝑎𝑠𝑡𝑂𝑛𝑒𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 = ∨ 𝑅(⊗∗⊨∗⊗) (176)

3.22. Objects

An object 𝑂 is a set of elements 𝑒𝑖 such that the values 𝑣𝑖 of all elements 𝑒𝑖 can be calculated. The

element 𝑒𝑖 is also called an attribute of 𝑂. Each element 𝑒𝑖 ∈ 𝑂 must have a:

• Declaration that states the name 𝑎𝑖 ∈ 𝕊 and the domain 𝔻𝑖 of 𝑒𝑖. To declare an element 𝑒𝑖 in
object 𝑂, the following notations are possible: 𝔻𝑖: 𝑎𝑖 ∈ 𝑂 or 𝑂. 𝔻𝑖: 𝑎𝑖. 𝑎𝑖 must be unique within

the name space of object 𝑂.

 ∀𝑖, 𝑗 ∈ [1, |𝑂|], 𝑖 ≠ 𝑗 ⟹ 𝑎𝑖 ≠ 𝑎𝑗 (177)

• Definition that provides a value 𝑣𝑖 to 𝑒𝑖. To define an element 𝑒𝑖, one writes 𝑎𝑖 = 𝑣𝑖, where 𝑣𝑖

denotes the CRML expression that provides a value to 𝑒𝑖.

There is an exception to the above rule that concerns external elements. An external element is an
element that is declared in object 𝑂 and defined in another object 𝑂′ ≠ 𝑂 of any kind that is not
necessarily expressed in CRML: requirement model, behavioral model, etc. The declaration of an
external element 𝑒𝑖 is denoted 𝔻𝑖: 𝑎𝑖 ∈ 𝑂′ or 𝑂′. 𝔻𝑖 : 𝑎𝑖 if object 𝑂′ is known. Otherwise, it is denoted

𝔻𝑖: 𝑎𝑖 ∈ ∗ or ∗. 𝔻𝑖: 𝑎𝑖 where ∗ indicates another object to be defined later via a binding mechanism.

An object 𝑂 can contain the following elements 𝑒𝑖:

• Variables 𝑥𝑖 ∈ 𝕍 of any of the domains listed in Section 3.16.

• Other objects 𝑂𝑖.

• Sets 𝑆𝑖 containing elements 𝑒𝑖𝑗 (recursive definition).

• At most one frame period 𝐹 that truncates all time periods defined in the object.

According to the above definitions, and object 𝑂 can be denoted as a set of valued attributes 𝑎𝑖:

 𝑂 = {𝔻1: 𝑎1 = 𝑣1, … 𝔻𝑖: 𝑎𝑖 = 𝑣𝑖 , … 𝔻|𝑂|: 𝑎|𝑂| = 𝑣|𝑂|} (178)

where each attribute 𝑎𝑖 denotes a variable 𝑥𝑖 ∈ 𝕍, an object 𝑂𝑖 ≠ 𝑂, a set 𝑆𝑖 of variables or objects, or
at most one frame period 𝐹. 𝔻𝑖 is the domain of 𝑎𝑖, and each attribute 𝑎𝑖 is being assigned a value 𝑣𝑖,

which can be a fixed value, of a value obtained by an operator 𝑓𝑖 which depends on the values 𝑣𝑗≠𝑖

and on the values 𝑣𝑘𝑙
′ of attributes of external objects 𝑂𝑘

′ . The assignments of the values 𝑣𝑖 must be
done in explicit form (i.e., so that they do not generate implicit equations).

The value 𝑣𝑖 of attribute 𝑎𝑖 is denoted 𝑂. 𝑎𝑖: 𝑣𝑖 = 𝑂. 𝑎𝑖.

Assigning a value 𝑣𝑖 to attribute 𝑎𝑖 of object 𝑂 is denoted 𝑂. 𝑎𝑖 = 𝑣𝑖 or 𝑂(𝑎𝑖 = 𝑣𝑖).

Two objects 𝑂1 = {𝔻1,1: 𝑎1,1 = 𝑣1,1, … 𝔻1,𝑖: 𝑎1,𝑖 = 𝑣1,𝑖 , … 𝔻1,|𝑂1|: 𝑎1,|𝑂1| = 𝑣1,|𝑂1|} and 𝑂2 = {𝔻2,1: 𝑎2,1 =

𝑣2,1, … 𝔻2,𝑖: 𝑎2,𝑖 = 𝑣2,𝑖 , … 𝔻2,|𝑂2|: 𝑎2,|𝑂2| = 𝑣2,|𝑂2|} belong to the same class 𝒞𝑂 if they have the same

attributes with the same types.

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 69 of 136 © EDF SA

 {𝔻1,1: 𝑎1,1, … 𝔻1,𝑖: 𝑎1,𝑖 , … 𝔻1,|𝑂1|: 𝑎1,|𝑂1|} = {𝔻2,1: 𝑎2,1, … 𝔻2,𝑖: 𝑎2,𝑖 , … 𝔻2,|𝑂2|: 𝑎2,|𝑂2|} ⟺ 𝑂1 ∈ 𝒞𝑂 and 𝑂2 ∈ 𝒞𝑂(179)

The two objects are not considered to be equal because at the same instant 𝑡 in time, their respective
attributes can have different values.

Therefore:

• The domain of object 𝑂 is the class 𝒞𝑂.Therefore, 𝑂 belongs to 𝒞𝑂: 𝑂 ∈ 𝒞𝑂. The objects 𝑂 ∈
𝒞𝑂 are called the instances of 𝒞𝑂. 𝑂 ∈ 𝒞𝑂 is also denoted 𝒞𝑂: 𝑂.

• Two objects 𝑂1 and 𝑂2 of the same class 𝒞𝑂 only differ in the values of their attributes: for all
𝑖, the value of 𝑂1. 𝑎𝑖 can be different from the value of 𝑂2. 𝑎𝑖.

• A class 𝒞𝑂 is the domain of all objects 𝑂 having the same attributes.

• 𝒞𝑂 is a set: 𝒞𝑂 ∈ 𝒮.

The domain of sets 𝑆 of objects 𝑂𝑖 that belong to the same class 𝒞𝑂 is denoted 2𝒞𝑂.Therefore 𝒞𝑂 ∈
2𝒞𝑂.

Example 1: object Pump.

𝒞Pump: 𝑃𝑢𝑚𝑝 = {

 *.ℝ: 𝑐,∗. ℝ: 𝜂,∗. 𝔹2: 𝑠, 𝔹2:∗. 𝑐𝑎𝑣;

 ℛ: 𝑅𝑛𝑜𝐶𝑎𝑣 = ¬𝑐𝑎𝑣 ⊗ [𝑠 ↑, ¬𝑠 ↑] }

where 𝑐 is the pump characteristic, 𝜂 is the pump efficiency, 𝑠 is the state started or not of the pump and 𝑐𝑎𝑣

indicates whether the pump is cavitating or not. The requirement 𝑅𝑛𝑜𝐶𝑎𝑣 states that the pump must not

cavitate during operation. The values of the external attributes are to be provided via the binding mechanism.

In this example, all attributes are variables.

Example 2: object CoolingSystem that contains three pumps.

𝒞CoolingSystem: 𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑦𝑠𝑡𝑒𝑚 = {𝒞𝑃𝑢𝑚𝑝: 𝑃1, 𝒞𝑃𝑢𝑚𝑝: 𝑃2, 𝒞𝑃𝑢𝑚𝑝: 𝑃3, 𝔹2: 𝑠}

where 𝑠 is the state started or not of the cooling system.

In this example, three attributes are objects (𝑃1, 𝑃2 and 𝑃3), and one attribute is a variable (𝑠). The

requirement 𝑅𝑛𝑜𝐶𝑎𝑣 applies automatically to all pumps in the cooling system.

Example 3: object CoolingSystem that contains an external set of pumps.

𝒞CoolingSystem: 𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑦𝑠𝑡𝑒𝑚 = {∗ .2𝒞𝑃𝑢𝑚𝑝 : 𝑝𝑢𝑚𝑝𝑠, 𝔹2: 𝑠}

where 𝑠 is the state started or not of the cooling system. The value of the set of pumps, i.e. the pumps that are

in the set, are to be provided via the binding mechanism. There are thus two binding mechanisms involved in

forming the value of the set: one that gets the list of pumps that are in the set, and for each pump, one that

gets the values of the external attributes of the pump.

In this example, one attribute is a set of objects, and one attribute is a variable. The requirement 𝑅𝑛𝑜𝐶𝑎𝑣

applies automatically to all pumps in the cooling system.

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 70 of 136 © EDF SA

3.23. Classes

3.23.1. Definition

A class 𝒞𝑂 is the domain of all objects 𝑂 having the same attributes 𝔻𝑖: 𝑎𝑖 regardless of their values 𝑣𝑖.

The definition �̂�𝑂 of a class 𝒞𝑂 is the set of the common attributes of all objects 𝑂 ∈ 𝒞𝑂. It is denoted as
follows:

 �̂�𝑂 = {𝔻1: 𝑎1, … 𝔻𝑖 : 𝑎𝑖 , … 𝔻𝑛: 𝑎𝑛} (180)

This notation emphasizes that all objects 𝑂 ∈ 𝒞𝑂 (i.e., all instances of 𝒞𝑂) have the same structure

given by �̂�𝑂 although the values of their variables (i.e., of the attributes that are not objects) can be

different from one object to the other. Therefore, �̂�𝑂 is the template for all objects 𝑂 ∈ 𝒞𝑂. In the
following, the hat above the name of the class will be omitted when there is no confusion between the

definition of the class, which is a set of attributes, and the class itself, which is a set of objects. �̂�𝑂 ∈ 𝒮.

To emphasize that 𝑎𝑖 is an attribute of class 𝒞𝑂, 𝑎𝑖 can be denoted 𝒞𝑂 . 𝑎𝑖.

The domain of class definitions is denoted 𝒞. Therefore, �̂�𝑂 can be denoted 𝒞: �̂�𝑂 to emphasize that it
is a class definition.

3.23.2. Class extensions

Like any domain, a class 𝒞𝑂′ can extend another class 𝒞𝑂 ≠ 𝒞𝑂′ . This is denoted 𝒞𝑂′ ⊂ 𝒞𝑂. If 𝒞𝑂′

extends 𝒞𝑂, then:

 𝒞𝑂′ = 𝒞𝑂 + {𝔻1
′ : 𝑎1

′ , … 𝔻𝑖
′: 𝑎𝑖

′, … 𝔻𝑛′
′ : 𝑎𝑛′

′ } (181)

where the 𝑎𝑖
′ are the additional attributes of 𝒞𝑂′.

If 𝒞𝑂′ extends 𝒞𝑂, it is possible to redeclare in 𝒞𝑂′ an attribute 𝔻𝑖: 𝑎𝑖 of 𝒞𝑂 by adding in 𝒞𝑂′ the attribute

𝔻𝑖
′: 𝑎𝑖, where 𝔻𝑖

′ is the new domain of 𝑎𝑖 such that 𝔻𝑖
′ extends 𝔻𝑖. Then the declaration 𝔻𝑖

′: 𝑎𝑖 is

compatible with the initial declaration 𝔻𝑖 : 𝑎𝑖 because 𝑎𝑖 ∈ 𝔻𝑖
′ and 𝔻𝑖

′ ⊂ 𝔻𝑖 ⟹ 𝑎𝑖 ∈ 𝔻𝑖. It is also possible

to modify the name of the redeclared attribute to a new name 𝑎𝑖
′ by writing 𝑎𝑖 → 𝑎𝑖

′ to ensure

traceability between the old name and the new name. Then the complete redeclaration of 𝑎𝑖 in 𝒞𝑂

writes 𝑎𝑖 → 𝔻𝑖
′: 𝑎𝑖

′ in 𝒞𝑂′. In the following equation, all attributes of 𝒞𝑂 are redeclared, provided that ∀𝑖 ∈
[1, 𝑛] 𝔻𝑖

′ ⊂ 𝔻𝑖:

 𝒞𝑂′ = 𝒞𝑂 + {𝔻1
′ : 𝑎1 → 𝑎1

′ , … 𝔻𝑖
′: 𝑎𝑖 → 𝑎𝑖

′, … 𝔻𝑛
′ : 𝑎𝑛 → 𝑎𝑛′

′ } (182)

It is possible to mix redeclared and non-redeclared attributes in the definition of 𝒞𝑂′. The value 𝑣𝑖
′ of

the redeclared attribute 𝔻𝑖
′: 𝑎𝑖 → 𝑎𝑖

′ in an instance 𝑂′ of 𝒞𝑂′ is denoted 𝑣𝑖
′ = 𝑂′. 𝑎𝑖

′, or 𝑣𝑖
′ = 𝑂′. 𝑎𝑖 → 𝑎𝑖

′ if

one wants to emphasize the traceability between 𝑎𝑖 and 𝑎𝑖
′ in case 𝑎𝑖

′ ≠ 𝑎𝑖.

Contrary to domains that are not classes, a class 𝒞𝑂′ can extend several classes 𝒞𝑂𝑖
. This is denoted

𝒞𝑂′ ⊂ 𝒞𝑂1
+ ⋯ 𝒞𝑂𝑖

+ ⋯ 𝒞𝑂𝑛
. Then

 𝒞𝑂′ = 𝒞𝑂1
+ ⋯ 𝒞𝑂𝑖

+ ⋯ 𝒞𝑂𝑛
+ {𝔻1

′ : 𝑎1
′ , … 𝔻𝑖

′: 𝑎𝑖
′, … 𝔻𝑛′

′ : 𝑎𝑛′
′ } (183)

where the 𝑎𝑖
′ are the additional attributes of 𝒞𝑂′.

3.23.3. Class specializations

Like any domain extension, a class 𝒞𝑂′ can specialize another class 𝒞𝑂 by assigning fixed values to

some attributes of 𝒞𝑂:

 𝒞𝑂′ = 𝒞𝑂(𝑎𝑖 = 𝑣𝑖 , 𝑖 ∈ 𝐹𝑂′ ⊂ [1, 𝑛]) (184)

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 71 of 136 © EDF SA

where 𝐹𝑂′ denotes the indices of the fixed attributes of 𝑂′. Here, the word ‘fixed’ means that a value

has been assigned to an attribute of a class, but the value can still depend on time.

𝒞𝑂′ specializes 𝒞𝑂 is denoted 𝒞𝑂′ ≺ 𝒞𝑂. Then an instance of 𝒞𝑂′ is obtained by assigning values to the

remaining non-fixed attributes 𝑎𝑖 ∈ �̅�𝑂′ = [1, 𝑛] − 𝐹𝑂′ :

 𝒞𝑂′ : 𝑂′(𝑎𝑖 = 𝑣𝑖 , 𝑖 ∈ �̅�𝑂′ = [1, 𝑛] − 𝐹𝑂′) (185)

and the values of the fixed attributes in 𝒞𝑂′ will be the same for all instances 𝑂′ of 𝒞𝑂′:

 ∀𝑖 ∈ 𝐹𝑂′ , ∀(𝑂1
′ , 𝑂2

′) ∈ 𝒞𝑂′ × 𝒞𝑂′ , 𝑂1
′ . 𝑎𝑖 = 𝑂2

′ . 𝑎𝑖 (186)

Contrary to domains that are not classes, it also possible to redefine a fixed attribute 𝑂′. 𝑎𝑖∈𝐹
𝑂′ of 𝑂′ ∈

𝒞𝑂′ by changing the value of 𝑂′. 𝑎𝑖∈𝐹
𝑂′.

3.23.4. Partial classes

Like any domains, a class can be partial. A partial class 𝒞𝑂 is a class that cannot have any instances
because it is incompletely defined. It is then expected that its definition will be completed by extending
or specializing 𝒞𝑂. A partial class 𝒞𝑂 is denoted partial 𝒞𝑂. Then:

 partial 𝒞𝑂 ⟹ 𝒞𝑂 = ∅ (187)

Example 1: class Equipment.

partial 𝒞Equipment = {∗. 𝔹2: 𝑠} (188)

where 𝑠 is the equipment state in operation or not. Partial means that this class provides an attribute, the

equipment state, that is common to all types of equipment, but does not give a sufficient description to create

an equipment.

Example 2: class Pump that extends class Equipment.

𝒞Pump = 𝒞𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 + { (189)

 *.ℝ: 𝑐,∗. ℝ: 𝜂, 𝔹2:∗. 𝑐𝑎𝑣;

 ℛ: 𝑅𝑛𝑜𝐶𝑎𝑣 = ¬𝑐𝑎𝑣 ⊗ [𝑠 ↑, ¬𝑠 ↑] }

This definition states that a pump is an equipment with additional attributes:

• 𝑐: pump characteristic,

• 𝜂: pump efficiency,

• 𝑐𝑎𝑣: indicates whether the pump is cavitating or not,

• 𝑅𝑛𝑜𝐶𝑎𝑣 is a requirement that states that the pump must not cavitate when being in operation.

The values of the external attributes are to be provided via the binding mechanism.

In this example, all attributes are variables.

Example 3: class CoolingSystem that extends class Equipment and uses class Pump.

𝒞CoolingSystem = 𝒞𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 + {𝒞Pump: 𝑃1 , 𝒞Pump: 𝑃2, 𝒞Pump: 𝑃3} (190)

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 72 of 136 © EDF SA

In this example, three attributes are objects (𝑃1, 𝑃2 and 𝑃3), and one attribute is a variable (𝑠, defined in the

class Equipment).

Example 4: class CentrifugalPump that extends class Pump with redeclaration.

𝒞CentrifugalPump = 𝒞Pump + { ∗. ℝ: 𝑐 → 𝑐𝑓 } (191)

In this example, only the name of the attribute 𝑐 of the class Pump has been changed to 𝑐𝑓 that means full

characteristic.

Example 5: class CoolingSystem′ that extends class CoolingSystem to use class CentrifugalPump

instead of class Pump.

𝒞CoolingSystem′ = 𝒞CoolingSystem + {𝒞CentrifugalPump: 𝑃1, 𝒞CentrifugalPump: 𝑃2, 𝒞CentrifugalPump: 𝑃3} (192)

In this example, all pumps have been redeclared as centrifugal pumps without changing their names.

Example 6: class CoolingSystem′ that extends class CoolingSystem to use class CentrifugalPump

instead of class Pump.

𝒞CoolingSystem′ = 𝒞CoolingSystem + {𝒞CentrifugalPump: 𝑃1 → 𝑃1
′, 𝒞CentrifugalPump: 𝑃2 →

𝑃2
′ , 𝒞CentrifugalPump: 𝑃3 → 𝑃3

′} (193)

In this example, all pumps have been redeclared as centrifugal pumps with new names.

3.24. Models

3.24.1. Definition

A model 𝑀 is a set of elements 𝑒𝑖 such that the values 𝑣𝑖 of all elements 𝑒𝑖 can be calculated. To that

end, each element 𝑒𝑖 ∈ 𝑀 is composed of a:

• Declaration that states the name and the domain 𝔻𝑖 of 𝑒𝑖. To declare an element 𝑒𝑖 in model
𝑀, the following notations are possible: 𝔻𝑖: 𝑎𝑖 ∈ 𝑀 or 𝑀. 𝔻𝑖: 𝑎𝑖, where 𝑎𝑖 ∈ 𝕊 is the name of 𝑒𝑖

called the identifier of 𝑒𝑖. 𝑎𝑖 must be unique within the name space of model 𝑀.

• Definition that provides a value 𝑣𝑖 to 𝑒𝑖. To define an element 𝑒𝑖, one writes 𝑎𝑖 = 𝑣𝑖, where 𝑣𝑖
denotes the CRML expression that provides a value to 𝑒𝑖.

There is an exception to the above rule that concerns external elements. An external element is an
element that is declared in model 𝑀 and defined in another model 𝑀′ ≠ 𝑀 of any kind that is not
necessarily expressed in CRML: requirement model, behavioral model, etc. The declaration of an
external element 𝑒𝑖 is denoted 𝔻𝑖: 𝑎𝑖 ∈ 𝑀′ or 𝑀′. 𝔻𝑖 : 𝑎𝑖 if model 𝑀′ is known. Otherwise, it is denoted

𝔻𝑖: 𝑎𝑖 ∈ ∗ or ∗. 𝔻𝑖: 𝑎𝑖 where ∗ indicates another model to be defined later via a binding mechanism.

A model 𝑀 can contain the following elements 𝑒𝑖:

• Other models 𝑀𝑖
′ ≠ 𝑀.

• Domain extensions 𝔻𝑖
′.

• Domain specializations 𝒟𝑖.

• Class definitions 𝒞𝑖.

• Operators 𝑓𝑖.

• Categories 𝑐𝑖.

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 73 of 136 © EDF SA

• Objects 𝑂𝑖.

• Variables 𝑥𝑖 ∈ 𝕍 of any of the domains listed in Section 3.16.

• Sets 𝑆𝑖.

• At most one frame period 𝐹 that truncates all time periods defined in the model. It is denoted
 ⊐ 𝑀 = 𝐹.

The domain of models is denoted ℳ. ℳ ⊂ 𝒮.

Thus, the definition of models is very similar to the definition of objects, the main differences being that
domains can be extended and specialized in models, categories and classes can be defined in models
and that models are not instances of classes but belong to a dedicated domain ℳ.

3.24.2. Model extensions

In the same way as for classes (cf. Section 3.23), a model 𝑀′ can extend a model 𝑀. This is denoted

𝑀′ ⊂ 𝑀:

 𝑀′ = 𝑀 + {𝔻1
′ : 𝑎1

′ , … 𝔻𝑖
′: 𝑎𝑖

′, … 𝔻𝑛′
′ : 𝑎𝑛′

′ } (194)

where the 𝑎𝑖
′ are the additional attributes of 𝑀′.

If 𝑀′ extends 𝑀 and if 𝐹 is the frame period of 𝑀, then 𝐹 is the frame period of 𝑀′:

 𝑀′ ⊂ 𝑀 and 𝐹 = ⊐ 𝑀 ⟹ 𝐹 = ⊐ 𝑀′ (195)

In the same way as for classes (cf. Section 3.23), it is possible to redeclare in 𝑀′ some or all of the

attributes of 𝑀. The following equation redeclares all the attributes of 𝑀:

 𝑀′ = 𝑀 + {𝔻1
′ : 𝑎1 → 𝑎1

′ , … 𝔻𝑖
′: 𝑎𝑖 → 𝑎𝑖

′, … 𝔻𝑛
′ : 𝑎𝑛 → 𝑎𝑛

′ } (196)

Example 1: a simple cooling system. This model expresses requirements on the pumps of the system
only.

ℳ: CoolingSystem = {

Define the class 𝒞Equipment :

• 𝑖𝑑 is a unique identifier for the equipment.

• 𝑠 is the state of the equipment declared as an external variable: started (𝑠 = 𝑡𝑟𝑢𝑒) or not started

(𝑠 = 𝑓𝑎𝑙𝑠𝑒).

𝒞: 𝒞Equipment = {𝕊: 𝑖𝑑, ∗. 𝔹2: 𝑠};

Define the class 𝒞pump as an equipment with additional features that are declared as external variables

that are elaborated by a behavioral model of the pump:

• 𝜔 is the rotational velocity of the pump.

• 𝜔𝑛 is the nominal rotational velocity of the pump.

• 𝑐𝑎𝑣 indicates whether the pump cavitates (𝑐𝑎𝑣 = 𝑡𝑟𝑢𝑒) or not (𝑐𝑎𝑣 = 𝑓𝑎𝑙𝑠𝑒). Cavitation occurs

when the pressure 𝑃𝑖 at the inlet of the pump is below a threshold 𝑃𝑚𝑖𝑛. The determination of

𝑐𝑎𝑣 includes a margin that considers the uncertainty Δ𝑃𝑖 on the measurement of 𝑃𝑖 . There are

two possibilities for defining 𝑐𝑎𝑣:

1. If 𝑃𝑖 ≥ 𝑃𝑚𝑖𝑛 + Δ𝑃𝑖 , then 𝑐𝑎𝑣 = 𝑡𝑟𝑢𝑒, else 𝑐𝑎𝑣 = 𝑓𝑎𝑙𝑠𝑒.

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 74 of 136 © EDF SA

2. If 𝑃𝑖 ≥ 𝑃𝑚𝑖𝑛 + Δ𝑃𝑖 , then 𝑐𝑎𝑣 = 𝑡𝑟𝑢𝑒, else if 𝑃𝑚𝑖𝑛 − Δ𝑃𝑖 < 𝑃𝑖 < 𝑃𝑚𝑖𝑛 + Δ𝑃𝑖 then 𝑐𝑎𝑣 =
𝑢𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑, else 𝑐𝑎𝑣 = 𝑓𝑎𝑙𝑠𝑒. This possibility yields more precise results by making the

difference between cases where the pressure measurement is outside of the uncertainty

margin or not.

𝒞: 𝒞Pump = 𝒞𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 + {

 ∗. ℝ: 𝜔, ∗. ℝ: 𝜔𝑛, ∗. 𝔹3: 𝑐𝑎𝑣;

 ℛ: 𝑅𝑛𝑜𝐶𝑎𝑣 = [𝑠 ↑, ¬𝑠 ↑] ⊨ ¬𝑐𝑎𝑣 }

Define the class 𝒞CoolingSystem . The cooling system is defined as an equipment that contains a set of

pumps that must not cavitate. The definition of the requirement 𝒞CoolingSystem . 𝑅𝑛𝑜𝐶𝑎𝑣“All pumps must

not cavitate while they are in operation” is given as follows: when instantiating the objects pumps from

the class 𝒞Pump, the individual requirement 𝒞Pump. 𝑅𝑛𝑜𝐶𝑎𝑣 will be automatically added to the model for

each pump. Then the logical conjunction of all individual requirements 𝒞Pump. 𝑅𝑛𝑜𝐶𝑎𝑣 is taken to form

the 𝒞CoolingSystem . 𝑅𝑛𝑜𝐶𝑎𝑣 requirement.

There are two possibilities:

1. Declare an external variable for the set of pumps. Then the set of pumps will be defined in

another model. This way, the current model is insensitive to the number and characteristics of the

pumps that will be chosen at the detailed design step.

𝒞: 𝒞CoolingSystem = 𝒞Equipment + {∗. 2𝒞Pump : 𝑃𝑢𝑚𝑝𝑠, ℛ: 𝑅𝑛𝑜𝐶𝑎𝑣 = ∧ 𝑃𝑢𝑚𝑝𝑠. 𝑅𝑛𝑜𝐶𝑎𝑣};

2. Define the set of pumps in the current model. The only attribute to be specified is the identifier

𝑖𝑑 as it is the only attribute that is not external.

𝒞: 𝒞CoolingSystem = 𝒞Equipment + {2𝒞Pump : 𝑃𝑢𝑚𝑝𝑠, ℛ: 𝑅𝑛𝑜𝐶𝑎𝑣 = ∧ 𝑃𝑢𝑚𝑝𝑠. 𝑅𝑛𝑜𝐶𝑎𝑣};

Instantiate the object CoolingSystem from the class 𝒞CoolingSystem .

• If the set of pumps is an external variable, then:

𝒞CoolingSystem : 𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑦𝑠𝑡𝑒𝑚;

• Else:

𝒞CoolingSystem : 𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑦𝑠𝑡𝑒𝑚(𝑃𝑢𝑚𝑝𝑠 = {𝒞Pump : 𝑃1(𝑖𝑑 = "P1"), 𝒞Pump : 𝑃2(𝑖𝑑 =

"P2"), 𝒞Pump : 𝑃3(𝑖𝑑 = "P3")});

After instantiation of the object CoolingSystem, the requirement 𝒞CoolingSystem . 𝑅𝑛𝑜𝐶𝑎𝑣“All pumps must

not cavitate while they are in operation” is automatically generated.

}

Example 2: refinement of the simple cooling system. This model expresses additional requirements on
the pumps of the system following design choices regarding the pumps.

ℳ: CoolingSystem′ = CoolingSystem + {

Extend the class 𝒞Pump defined in CoolingSystem to include the additional requirement due to pump

technology limitations “The pump must not be started more than twice in a sliding time period of one

day”. The function count is given by Eq. (82).

𝒞: 𝒞Pump′ = 𝒞: 𝒞Pump + { 2𝒫 : 𝑃 = [𝑠 ↑, 𝑠 ↑ +1 d [, ℛ: 𝑅𝑛𝑜𝑆𝑡𝑎𝑟𝑡 = P ⊨ (count(𝑠, P) ≤ 2) };

Extend the class 𝒞CoolingSystem to redeclare the set of pumps as being instances of the new class 𝒞Pump′ .

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 75 of 136 © EDF SA

𝒞: 𝒞CoolingSystem′ = 𝒞: 𝒞CoolingSystem + {2
𝒞

Pump ′ : 𝑃𝑢𝑚𝑝𝑠}

Redeclare the object CoolingSystem to be an instance the new class 𝒞CoolingSystem′ . In the new design,

only two pumps are considered.

• If the set of pumps is an external variable, then:

𝒞CoolingSystem′ : 𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑦𝑠𝑡𝑒𝑚;

• Else:

𝒞CCoolingSystem′ : 𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑦𝑠𝑡𝑒𝑚(𝑃𝑢𝑚𝑝𝑠 = {𝒞Pump′ : 𝑃1(𝑖𝑑 = "P1"), 𝒞Pump′ :P2(id="P2")})

Then in the refined model CoolingSystem′, the additional requirement on the pumps will be

automatically taken into account.

}

3.25. Libraries

The purpose of libraries is to contain elements that can be reused in models.

A library 𝐿 is a set that can contain the following elements 𝑒𝑖:

• Other libraries 𝐿𝑖
′ ≠ 𝐿.

• Domain extensions 𝔻𝑖
′.

• Domain specializations 𝒟𝑖.

• Class definitions 𝒞𝑖.

• Operators 𝑓𝑖.

• Categories 𝑐𝑖.

Elements 𝑒𝑖 that belong to library 𝐿 are denoted 𝑒𝑖 ∈ 𝐿 or 𝐿. 𝑒𝑖.

The domain of libraries is denoted ℒ. ℒ ⊂ 𝒮.

Example 1: a library that contains the definition of the classes used in Example 1 of Section 3.24.

ℒ: CoolingLib = {

𝒞: 𝒞Equipment = {𝕊: 𝑖𝑑, ∗. 𝔹2: 𝑠};

• 𝑖𝑑 is a unique identifier for the equipment.

• 𝑠 is the state of the equipment: started (𝑠 = 𝑡𝑟𝑢𝑒) or not started (𝑠 = 𝑓𝑎𝑙𝑠𝑒).

𝒞: 𝒞Pump = 𝒞𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 + {

 ∗. ℝ: 𝜔, ∗. ℝ: 𝜔𝑛, ∗. 𝔹3: 𝑐𝑎𝑣;

 ℛ: 𝑅𝑛𝑜𝐶𝑎𝑣 = ¬𝑐𝑎𝑣 ⊗ [𝑠 ↑, ¬𝑠 ↑] }

• 𝜔 is the rotational velocity of the pump.

• 𝜔𝑛 is the nominal rotational velocity of the pump.

• 𝑐𝑎𝑣 indicates whether the pump cavitates (𝑐𝑎𝑣 = 𝑡𝑟𝑢𝑒) or not (𝑐𝑎𝑣 = 𝑓𝑎𝑙𝑠𝑒). Cavitation occurs

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 76 of 136 © EDF SA

when the pressure 𝑃𝑖 at the inlet of the pump is below a threshold 𝑃𝑚𝑖𝑛. The determination of

𝑐𝑎𝑣 includes a margin that considers the uncertainty Δ𝑃𝑖 on the measurement of 𝑃𝑖 . There are

two possibilities for defining 𝑐𝑎𝑣:

1. If 𝑃𝑖 ≥ 𝑃𝑚𝑖𝑛 + Δ𝑃𝑖 , then 𝑐𝑎𝑣 = 𝑡𝑟𝑢𝑒, else 𝑐𝑎𝑣 = 𝑓𝑎𝑙𝑠𝑒.

2. If 𝑃𝑖 ≥ 𝑃𝑚𝑖𝑛 + Δ𝑃𝑖 , then 𝑐𝑎𝑣 = 𝑡𝑟𝑢𝑒, else if 𝑃𝑚𝑖𝑛 − Δ𝑃𝑖 < 𝑃𝑖 < 𝑃𝑚𝑖𝑛 + Δ𝑃𝑖 then 𝑐𝑎𝑣 =
𝑢𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑, else 𝑐𝑎𝑣 = 𝑓𝑎𝑙𝑠𝑒. This possibility yields more precise results by making the

difference between cases where the pressure measurement is outside of the uncertainty

margin or not.

𝒞: 𝒞𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑦𝑠𝑡𝑒𝑚 = 𝒞𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 + {∗. 2𝒞𝑃𝑢𝑚𝑝 : 𝑃𝑢𝑚𝑝𝑠, ℛ: 𝑅𝑛𝑜𝐶𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛 = ∧ 𝑃𝑢𝑚𝑝𝑠. 𝑅𝑛𝑜𝐶𝑎𝑣 };

or

𝒞: 𝒞𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑦𝑠𝑡𝑒𝑚 = 𝒞𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 + {2𝒞𝑃𝑢𝑚𝑝 : 𝑃𝑢𝑚𝑝𝑠, ℛ: 𝑅𝑛𝑜𝐶𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛 = ∧ 𝑃𝑢𝑚𝑝𝑠. 𝑅𝑛𝑜𝐶𝑎𝑣};

}

Then the model CoolingSystem can be defined using the library CoolingLib:

ℳ: CoolingSystem = { CoolingLib. 𝒞𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑦𝑠𝑡𝑒𝑚 : 𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑦𝑠𝑡𝑒𝑚 }

or

ℳ: CoolingSystem = {

CoolingLib. 𝒞𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑦𝑠𝑡𝑒𝑚 : 𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑦𝑠𝑡𝑒𝑚(𝑃𝑢𝑚𝑝𝑠 = {𝒞Pump : 𝑃2(𝑖𝑑 = "P2"), 𝒞Pump : 𝑃2(𝑖𝑑

= "P2"), 𝒞Pump : 𝑃3(𝑖𝑑 = "P3"))

}

depending on whether the set of pumps is an external variable or not.

3.26. Packages

The purpose of a package is to contain all elements that are needed to compute a model.

A package 𝑃 is a set that can contain the following elements 𝑒𝑖:

• Other packages 𝑃𝑖
′ ≠ 𝑃.

• Libraries 𝐿𝑖 ..

• Models 𝑀𝑖.

Elements 𝑒𝑖 that belong to package 𝑃 are denoted 𝑒𝑖 ∈ 𝑃 or 𝑃. 𝑒𝑖.

The domain of packages is denoted 𝒯. 𝒯 ⊂ 𝒮

Example 1: a package for the cooling system of Example 1 in Section 3.25.

𝒯: CoolingSystemPackage = { CoolingLib, CoolingSystem }

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 77 of 136 © EDF SA

4. Syntax

4.1. Notation

[expr] denotes an optional expression expr when the color of the square brackets is black.

{ expr } denotes an expression that is repeated one or more times when the color of the curly braces is
black.

expr_1 | expr_2 | … | expr_n denotes n possible alternatives between the expressions expr_1 to
expr_n.

'c' denotes the character c.

"keyword" denotes the String keyword.

Built-in keywords are written in blue.

User-defined objects names are written in orange.

Categories names are written in red.

4.2. Keywords

4.2.1. Types

Keyword Semantics Comments

Boolean 𝔹 4-valued Booleans.

Category 𝒞(𝕆1 ⟶ 𝕆2) Categories.

class 𝒞 Class definitions.

Clock 2ℰ or 𝒟 Clocks.

Event ℰ Events.

Integer ℤ Positive and negative integers.

library ℒ Libraries.

model ℳ Models.

Operator 𝕆(𝔻1 ⟶ 𝔻2)
Operators. The names of the domains 𝔻1 and 𝔻2
are given in the declaration of the operator.

package 𝒯 Packages.

Period 𝒫 Single time periods.

Periods 2𝒫 Multiple time periods.

Probability 𝕆(𝔹2 ⟶ ℝ) Probabilities.

Real ℝ Real numbers.

String 𝕊 Strings.

Template 𝕆(𝔹𝑛 ⟶ 𝔹) Templates.

type 𝔗 Type definitions.

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 78 of 136 © EDF SA

4.2.2. Special values

Values Semantics Comments

false 𝑓𝑎𝑙𝑠𝑒

true 𝑡𝑟𝑢𝑒

undecided 𝑢𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑

undefined 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑

time

4.2.3. Special characters

Characters Semantics Comments

((

))

[[

]]

{ { Opens sets.

} } Closes sets.

, , Set element separator.

; ; Set element separator.

. . Decimal point. Path element separator.

" " String delimiter.

' Quote string delimiter.

E Decimal exponent.

e Decimal exponent.

// Start of comment line.

/* Begins comment.

*/ Ends comment.

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 Digits

4.2.4. Operators

Operators Comments

=

+

-

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 79 of 136 © EDF SA

Operators Comments

*

/

<

<=

>

>=

==

<>

^

acos

alias

and

asin

associate

at

card

constant

cos

duration

element

else

end

estimator

exp

extends

external

filter

flatten

forbid

if

integrate

is

log

log10

mod

new

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 80 of 136 © EDF SA

Operators Comments

not

on

or

parameter

partial

proj

redeclare

sin

start

then

tick

time from

union

variance

while

with

4.3. Expressions

The CRML expression for the declaration and/or definition of any CRML element is of the form:

Natural language syntax Mathematical syntax Semantics Reference

[[type] ident is] [value | external]
[; | ,]

[[type] ident =] [value | external]
[; | ,]

𝑡𝑦𝑝𝑒: 𝑖𝑑𝑒𝑛𝑡
= 𝑣𝑎𝑙𝑢𝑒

∗. 𝑡𝑦𝑝𝑒: 𝑖𝑑𝑒𝑛𝑡

3.20.2

3.22

3.24.1

The semicolon (;) can be replaced by the comma (,), and is only mandatory when two or more
expressions must be separated in sets or operator calls.

type ident is the declaration of the element of type type and name ident.

type is the type of the expression, to be chosen among Real, Integer, String, Boolean, Event, etc., or
user-defined types.

ident is the identifier of the expression which is unique within its scope (or namespace). An identifier is
a character string composed of a non-digit optionally followed by digits or non-digits:

ident: non-digit [{digit | non-digit}]

non-digit: '_' | characters 'a' to 'z' | characters 'A' to 'Z'

digit: characters '0' to '9'

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 81 of 136 © EDF SA

The identifier, and therefore the type, are not explicitly written when the expression is an argument in
the call of an operator: the type and the identifier are automatically inferred by the argument binding
mechanism from the position of the argument in the function call, and the alias of the argument type if
any.

The identifier is omitted for anonymous sets.

There is a special syntax for the declaration of an operator in the natural language syntax, cf.
Section 4.13.

The type is not explicitly written when the expression is an argument in the constructor of an object. It
is automatically inferred from its identifier and from the object’s class definition.

value is the definition of the element. It denotes the value of the expression, which depends on the
type of the element. It is expressed by an expression using a constructor or an operator that take
expressions as arguments and return a value of the element type. Expressions are thus recursively
defined until they involve constructors with no arguments or external expressions:

expr: [[type] ident is] [value | external]

value: ([new] constructor [{expr}]) | (operator {expr})

The value of the expression is always explicit: it cannot be obtained by solving an equation. The
keyword external stands for the value when the element is external.

If the name of the constructor is the same as the name of a user-defined class, then the keyword new
must be used to create an instance of the class.

There are two kinds of CRML elements: sets and set elements. Sets contain set elements. A set can
be a set element of another set.

A set can depend on time, depending on its type, which means that the set elements can be added or
removed dynamically. Dynamic sets are of the type Clock or Periods.

A set can be empty.

There are three kinds of sets: typed sets, special sets, and the universal set. In a typed set, all
elements are of the same type. In a special set, elements can be of different types. The special sets
are of the type type, class, model, library or package. The universal set is the only set that has no
expression: it has no identifier and is implicitly defined as being the set that contains all sets except
itself.

The scope of an expression is the set where it belongs.

The implicit type of the universal set (the set that contains all sets) is package, because package is the
only set that can contain (directly or indirectly) all sets of the language.

An expression refers to another expression outside of its scope by appending the relative path of the
outside expression to the identifier of the outside expression (absolute path is not possible because
the universal set has no identifier).

4.4. Comments

Comments are identical to C++ (or Modelica).

There are two kinds of comments, single-line comment and multiline comments.

// This is a single-line comment

The characters from // until the end of the line are ignored.

/* This is a

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 82 of 136 © EDF SA

multiline comment */

The characters enclosed between /* and */ are ignored, including return carriages. Multiline comments
cannot be nested.

Expressions in comments are not part of the CRML language.

4.5. Type Real

4.5.1. Constructors

Natural language syntax Mathematical syntax Semantics Reference

Real x is decimal_value; Real x = decimal_value; ℝ: 𝑥 = 𝑑𝑒𝑐𝑖𝑚𝑎𝑙_𝑣𝑎𝑙𝑢𝑒

Integer n;

Real x is new Real n;

Integer n;

Real x = new Real n;

ℕ: 𝑛

ℝ: 𝑥 = 𝑛

A decimal value is defined as

decimal_value: [sign] [{‘ ‘}] {digit} [‘.’] [{digit}] [exponent]

sign: ‚+‘ | ‚-‚

exponent: (‚E‘ | ‚e‘) [sign] {digit}

digit: characters ‘0’ to ‘9’

where:

• ‘+’ | ‘-‘ denotes the + or the − sign,

• {‘ ‘} denotes one or more spaces,

• {digit} denotes one or more digits,

• ‘.’ is the decimal point,

• ‘E’ is the decimal exponent: 1En = 10n where n is a positive or negative integer,

• ‘e’ can be used instead of ‘E’.

Example 1: correct expressions

Real x1 is −28.775E+3;

Real x2 is 0.28e−7;

Real x3 is +3.E10;

Real x4 is − 25.3;

Real x5 is 25;

Example 2: incorrect expressions

Real x6 is .7; // No digit before the decimal point

Real x7 is −28.775E +3; // Space after the decimal exponent

Real x8 is −28.775 E+3; // Space before the decimal exponent

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 83 of 136 © EDF SA

Real x9 is −28.775E+ 3; // Space after the + sign

Real x10 is E+3; // No digit before the decimal exponent

Real x11 is 1.E+3.14; // Decimal point in the decimal exponent

4.5.2. Operators

Name Natural language
syntax

Mathematical syntax Semantics Reference

Binary
addition

Real x1, x2;

Real x is x1 + x2;

Real x1, x2;

Real x = x1 + x2;

ℝ: 𝑥1, ℝ: 𝑥2

ℝ: 𝑥 = 𝑥1 + 𝑥2

Binary
subtraction

Real x1, x2;

Real x is x1 − x2;

Real x1, x2;

Real x = x1 − x2;

ℝ: 𝑥1, ℝ: 𝑥2

ℝ: 𝑥 = 𝑥1 − 𝑥2

Unary
addition

Real x1;

Real x2 is +x1;

Real x1;

Real x2 = +x1;

ℝ: 𝑥1

ℝ: 𝑥2 = +𝑥1

Unary
subtraction

Real x1;

Real x2 is −x1;

Real x1;

Real x2 = −x1;

ℝ: 𝑥1

ℝ: 𝑥2 = −𝑥1

Multiplication
Real x1, x2;

Real x is x1 * x2;

Real x1, x2;

Real x = x1 * x2;

ℝ: 𝑥1, ℝ: 𝑥2

ℝ: 𝑥 = 𝑥1 × 𝑥2

Division
Real x1, x2;

Real x is x1 / x2;

Real x1, x2;

Real x = x1 / x2;

ℝ: 𝑥1, ℝ∗: 𝑥2

ℝ: 𝑥 = 𝑥1/𝑥2

Exponentiati
on

Real x1, x2;

Real x is x1 ^ x2;

Real x1, x2;

Real x = x1 ^ x2;

ℝ: 𝑥1, ℝ: 𝑥2

ℝ: 𝑥 = 𝑥1
𝑥2

Greater than

Real x1, x2;

Boolean b is x1 >=
x2;

Real x1, x2;

Boolean b = x1 >=
x2;

ℝ: 𝑥1, ℝ: 𝑥2

𝔹2: 𝑏 = 𝑥1 ≥ 𝑥2

Less than

Real x1, x2;

Boolean b is x1 <=
x2;

Real x1, x2;

Boolean b = x1 <=
x2;

ℝ: 𝑥1, ℝ: 𝑥2

𝔹2: 𝑏 = 𝑥1 ≤ 𝑥2

Strictly
greater than

Real x1, x2;

Boolean b is x1 > x2;

Real x1, x2;

Boolean b = x1 > x2;

ℝ: 𝑥1, ℝ: 𝑥2

𝔹2: 𝑏 = 𝑥1 > 𝑥2

Strictly less
than

Real x1, x2;

Boolean b is x1 < x2;

Real x1, x2;

Boolean b = x1 < x2;

ℝ: 𝑥1, ℝ: 𝑥2

𝔹2: 𝑏 = 𝑥1 < 𝑥2

Sine
Real x1, x2;

Real x2 is sin x1;

Real x1, x2;

Real x2 = sin (x1);

ℝ: 𝑥1

ℝ: 𝑥2 = sin 𝑥1

Cosine
Real x1, x2;

Real x2 is cos x1;

Real x1, x2;

Real x2 = cos (x1);

ℝ: 𝑥1

ℝ: 𝑥2 = cos 𝑥1

Inverse sine
Real x1, x2;

Real x2 is asin x1;

Real x1, x2;

Real x2 = asin x1;

ℝ: 𝑥1

ℝ: 𝑥2 = asin 𝑥1

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 84 of 136 © EDF SA

Name Natural language
syntax

Mathematical syntax Semantics Reference

Inverse
cosine

Real x1, x2;

Real x2 is acos x1;

Real x1, x2;

Real x2 = acos x1;

ℝ: 𝑥1

ℝ: 𝑥2 = acos 𝑥1

Exponential
Real x1, x2;

Real x2 is exp x1;

Real x1, x2;

Real x2 = exp (x1);

ℝ: 𝑥1

ℝ: 𝑥2 = 𝑒𝑥1

Logarithm
Real x1, x2;

Real x2 is log x1;

Real x1, x2;

Real x2 = log (x1);

ℝ+
∗ : 𝑥1

ℝ: 𝑥2 = log𝑒 𝑥1

Base 10
logarithm

Real x1, x2;

Real x2 is log10 x1;

Real x1, x2;

Real x2 = log10 (x1);

ℝ+
∗ : 𝑥1

ℝ: 𝑥2 = log10 𝑥1

If then else

Boolean b;

Real x1, x2;

Real x is if b then x1
else x2;

Boolean b;

Real x1, x2;

Real x = if b then x1
else x2;

𝔹: 𝑏, ℝ: 𝑥1, ℝ: 𝑥2

ℝ: 𝑥 = {
𝑥1 if 𝑏 = 𝑡𝑟𝑢𝑒

𝑥2 else

At event

Real x1;

Clock c;

Real x2 is x1 at c;

Real x1;

Clock c;

Real x2 = x1 at c;

ℝ: 𝑥1, 𝒟: 𝑐

ℝ: 𝑥2 = 𝑥1(@ 𝑡 Ω⁄)
3.7.1

The expression

x2 is x1 at c;

takes the value of x1 at every tick of clock c. The value of x2 between two ticks t1 and t2 is equal to
the value of x1 at tick t1.

Example 1: verifying that x1 is greater than x2 when y becomes positive.

Real x1;

Real x2;

Real y;

Clock c is new Clock (y > 0);

Boolean b is (x1 > x2) at c;

It is also possible to write:

Boolean b is (x1 at c) > (x2 at c);

4.6. Type Integer

4.6.1. Constructors

Natural language syntax Mathematical syntax Semantics Reference

Integer n is integer_value; Integer n = integer_value; ℤ: 𝑛 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟_𝑣𝑎𝑙𝑢𝑒

Real x;

Integer n is new Integer x;

Real x;

Integer n = new Integer x;

ℝ: 𝑥

ℤ: 𝑛 = 𝑥

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 85 of 136 © EDF SA

An integer value is defined as

integer_value: [sign] [{' '}] {digit} [exponent]

sign: '+' | '-'

exponent: ('E' | 'e') {digit}

digit: characters '0' to '9'

where:

• '+' | '-' denotes the + or the − sign,

• {' '} denotes one or more spaces,

• {digit} denotes one or more digits,

• 'E' is the decimal exponent: 1.En = 10n where n is a positive or negative integer,

• 'e' can be used instead of 'E'.

Example 1: correct expressions

Integer x1 is 25;

Integer x2 is + 25;

Integer x3 is −25;

Integer x4 is −28E3;

Integer x5 is new Integer −25.8; // The value of x is −25

Example 2: incorrect expressions

Integer x6 is −25.8; // Decimal point

Integer x7 is −28E 3; // Space after the decimal exponent

Integer x8 is −28 E+3; // Space before the decimal exponent

Integer x9 is −28E+3; // Sign after the decimal exponent

Integer x10 is E3; // No digit before the decimal exponent

Integer x11 is 1E3.; // Decimal point in the decimal exponent

4.6.2. Operators

Name Natural language
syntax

Mathematical syntax Semantics Reference

Binary
addition

Integer n1, n2;

Integer n is n1 + n2;

Integer n1, n2;

Integer n = n1 + n2;

ℤ: 𝑛1, ℤ: 𝑛2

ℤ: 𝑛 = 𝑛1 + 𝑛2

Binary
subtraction

Integer n1, n2;

Integer n is n1 − n2;

Integer n1, n2;

Integer n = n1 − n2;

ℤ: 𝑛1, ℤ: 𝑛2

ℤ: 𝑛 = 𝑛1 − 𝑛2

Unary
addition

Integer n1;

Integer n2 is +n1;

Integer n1;

Integer n2 = +n1;

ℤ: 𝑛1

ℤ: 𝑛2 = +𝑛1

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 86 of 136 © EDF SA

Name Natural language
syntax

Mathematical syntax Semantics Reference

Unary
subtraction

Integer n1;

Integer n2 is −n1;

Integer n1;

Integer n2 = −n1;

ℤ: 𝑛1

ℤ: 𝑛2 = −𝑛1

Multiplication
Integer n1, n2;

Integer n is n1 * n2;

Integer n1, n2;

Integer n = n1 * n2;

ℤ: 𝑛1, ℤ: 𝑛2

ℤ: 𝑛 = 𝑛1 × 𝑛2

Integer
division

Integer n1, n2;

Integer n is n1 / n2;

Integer n1, n2;

Integer n = n1 / n2;

ℤ: 𝑛1, ℤ∗: 𝑛2

ℤ: 𝑛 = 𝑛1/𝑛2

Exponentiati
on

Integer n1, n2;

Integer n is n1 ^ n2;

Integer n1, n2;

Integer n = n1 ^ n2;

ℤ: 𝑛1, ℕ: 𝑛2

ℤ: 𝑛 = 𝑛1
𝑛2

Greater than

Integer n1, n2;

Boolean b is n1 >=
n2;

Integer n1, n2;

Boolean b = n1 >=
n2;

ℤ: 𝑛1, ℤ: 𝑛2

𝔹2: 𝑏 = 𝑛1 ≥ 𝑛2

Less than

Integer n1, n2;

Boolean b is n1 <=
n2;

Integer n1, n2;

Boolean b = n1 <=
n2;

ℤ: 𝑛1, ℤ: 𝑛2

𝔹2: 𝑏 = 𝑛1 ≤ 𝑛2

Strictly
greater than

Integer n1, n2;

Boolean b is n1 > n2;

Integer n1, n2;

Boolean b = n1 > n2;

ℤ: 𝑛1, ℤ: 𝑛2

𝔹2: 𝑏 = 𝑛1 > 𝑛2

Strictly less
than

Integer n1, n2;

Boolean b is n1 < n2;

Integer n1, n2;

Boolean b = n1 < n2;

ℤ: 𝑛1, ℤ: 𝑛2

𝔹2: 𝑏 = 𝑛1 < 𝑛2

Equal to

Integer n1, n2;

Boolean b is n1 ==
n2;

Integer n1, n2;

Boolean b = n1 ==
n2;

ℤ: 𝑛1, ℤ: 𝑛2

𝔹2: 𝑏 = (𝑛1 = 𝑛2)

Different
from

Integer n1, n2;

Boolean b is n1 <>
n2;

Integer n1, n2;

Boolean b = n1 <>
n2;

ℤ: 𝑛1, ℤ: 𝑛2

𝔹: 𝑏 = (𝑛1 ≠ 𝑛2)

Modulo

Integer n1, n2;

Integer n is n1 mod
n2;

Integer n1, n2;

Integer n = n1 mod
n2;

ℤ: 𝑛1, ℤ: 𝑛2

ℤ 𝑛2ℤ⁄ : 𝑛 = 𝑛1mod 𝑛2

If then else

Boolean b;

Integer n1, n2;

Integer n is if b then
n1 else n2;

Boolean b;

Integer n1, n2;

Integer n = if b then
n1 else n2;

𝔹: 𝑏, ℤ: 𝑛1, ℤ∗: 𝑛2

ℤ: 𝑛 = {
𝑛1 if 𝑏 = 𝑡𝑟𝑢𝑒

𝑛2 else

At event

Integer n1;

Clock c;

Integer n2 is n1 at c;

Integer n1;

Clock c;

Integer n2 = n1 at c;

ℤ: 𝑛1, 𝒟: 𝑐

ℤ: 𝑛2 = 𝑛1(@ 𝑡 Ω⁄)
3.7.1

The expression

n2 is n1 at c;

takes the value of n1 at every tick of clock c. The value of n2 between two ticks t1 and t2 is equal to
the value of n1 at tick t1.

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 87 of 136 © EDF SA

Example 1: verifying that n1 is greater than n2 when y becomes positive.

Integer n1;

Integer n2;

Real y;

Clock c is new Clock (y > 0);

Boolean b is (n1 > n2) at c;

It is also possible to write:

Boolean b is (n1 at c) > (n2 at c);

4.7. Type String

4.7.1. Constructors

Natural language syntax Mathematical syntax Semantics Reference

String s is string_value; String s = string_value; 𝕊: 𝑥 = 𝑠𝑡𝑟𝑖𝑛𝑔_𝑣𝑎𝑙𝑢𝑒

Real x;

String s is new String x;

Real x;

String s = new String x;

ℝ: 𝑥

𝕊: 𝑠 = string 𝑥

Integer n;

String s is new String n;

Integer n;

String s = new String n;

ℕ: 𝑛

𝕊: 𝑠 = string 𝑛

Boolean b;

String s is new String b;

Boolean b;

String s = new String b;

𝔹: 𝑏

𝕊: 𝑠 = string 𝑏

A string value is defined as:

string_value: '"' [{ digit | non-digit | special_char | escape_char}] '"'

non-digit: '_' | characters 'a' to 'z' | characters 'A' to 'Z'

digit: characters '0' to '9'

special_char: '!' | '#' | '$' | '%' | '&' | '(' | ')' | '*' | '+' | ','

| '-' | '.' | '/' | ':' | ';' | '<' | '>' | '=' | '?' | '@' |

'[' | ']' | '^' | '{' | '}' | '|' | '~' | ' '

escape_char: '\"' | '\\' | '\’'

Example 1: correct expressions

String s1 is "This is a string";

String s2 is new String "This is a \"nice\" string"; // The value of s is " This is a "nice" string "

String s3 is ""; // Empty string

String s4 is "$PO1_ is the identifier of the pump";

String s5 is new String -23; // The value of s is "-23"

String s6 is new String 10.5E7; // The value of s is "10.5E7"

String s7 is new String true; // The value of s is "true"

String s8 is new String false; // The value of s is "false"

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 88 of 136 © EDF SA

String s9 is new String undecided; // The value of s is "undecided"

String s10 is new String undefined; // The value of s is "undefined"

Example 2: incorrect expressions

String s11 is This is a string"; // First double quote missing

String s12 is "This is " a string"; // Escape char \ missing before second double quote

4.7.2. Operators

Name Natural language
syntax

Mathematical
syntax

Semantics Reference

Concatenation
String s1, s2;

String s is s1 + s2;

String s1, s2;

String s = s1 + s2;

𝕊: 𝑠1, 𝕊: 𝑠2

𝕊: 𝑠 = 𝑠1 + 𝑠2

Example 1: string concatenation

Integer n is 3;

Real x is 2.5;

String s is "The " + new String n + " ships follow each other from a distance of " + new String x + "
kilometers.";

The value of s is "The 3 ships follow each other from a distance of 2.5 kilometers."

Example 2: string concatenation

String s is "The set of 4-valued Booleans is { " + new String undecided + ", " + new String undefined +
", " + new String false + ", " + new String true + “ }. “

The value of s is “The set of 4-valued Booleans is { undecided, undefined, false, true }.”

4.8. Type Boolean

4.8.1. Constructors

Natural language syntax Mathematical syntax Semantics Reference

Boolean b is true; Boolean b = true; 𝔹: 𝑏 = 𝑡𝑟𝑢𝑒 3.2

Boolean b is false; Boolean b = false; 𝔹: 𝑏 = 𝑓𝑎𝑙𝑠𝑒 3.2

Boolean b is undecided; Boolean b = undecided; 𝔹: 𝑏 = 𝑢𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 3.2

Boolean b is undefined; Boolean b = undefined; 𝔹: 𝑏 = 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 3.2

Clock c;

Boolean b is new Boolean
c;

Clock c;

Boolean b = new Boolean
c;

𝒟: c

𝔹: 𝑏 = 𝑏(c)
3.6

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 89 of 136 © EDF SA

4.8.2. Operators

Name Natural language
syntax

Mathematical syntax Semantics Reference

Conjunction

Boolean b1, b2;

Boolean b is b1 and
b2;

Boolean b1, b2;

Boolean b = b1 and
b2;

𝔹: 𝑏1, 𝔹: 𝑏2

𝔹: 𝑏 = 𝑏1 ∧ 𝑏2
3.2

Disjunction

Boolean b1, b2;

Boolean b is b1 or
b2;

Boolean b1, b2;

Boolean b = b1 or
b2;

𝔹: 𝑏1, 𝔹: 𝑏2

𝔹: 𝑏 = 𝑏1 ∨ 𝑏2
3.2

Conjunction
with event

Boolean b1;

Event e;

Boolean b2 is b1 and
e;

Boolean b1;

Event e;

Boolean b2 = b1 and
e;

𝔹: 𝑏1, ℰ: 𝑒

𝔹: 𝑏2 = 𝑏1 ∧ 𝑒
3.5.11

Disjunction
with event

Boolean b1;

Event e;

Boolean b2 is b1 or
e;

Boolean b1;

Event e;

Boolean b2 = b1 or
e;

𝔹: 𝑏1, ℰ: 𝑒

𝔹: 𝑏2 = 𝑏1 ∨ 𝑒
3.5.11

Negation
Boolean a;

Boolean b is not a;

Boolean a;

Boolean b = not a;

𝔹: 𝑎

𝔹: 𝑏 = ¬𝑎
3.2

Filter
Boolean b1, b2;

Boolean b is b1 * b2;

Boolean b1, b2;

Boolean b = b1 * b2;

𝔹3: 𝑏1, 𝔹: 𝑏2

𝔹: 𝑏 = 𝑏1 × 𝑏2
3.11.2

Accumulation
Boolean b1, b2;

Boolean b is b1 + b2;

Boolean b1, b2;

Boolean b = b1 + b2;

𝔹: 𝑏1, 𝔹: 𝑏2

𝔹: 𝑏 = 𝑏1 + 𝑏2
3.11.1

Integration

Boolean a;

Period P;

Boolean b is
integrate a on P;

Boolean a;

Period P;

Boolean b =
integrate (a, P);

𝔹: 𝑎, 𝒫: 𝑃

𝔹: 𝑏 = ∫ 𝑎

𝑃

3.11.6

Duration

Boolean a;

Period P;

Real d is duration a
on P;

Boolean a;

Period P;

Real d = duration (a,
P);

𝔹: 𝑎, 𝒫: 𝑃

ℝ+: 𝑑 = duration(𝑎, 𝑃)
3.11.3

Equality

Boolean b1, b2;

Boolean b is b1 ==
b2;

Boolean b1, b2;

Boolean b = (b1 ==
b2);

𝔹: 𝑏1, 𝔹: 𝑏2

𝔹: 𝑏 = (𝑏1 = 𝑏2)
3.2

If then else

Boolean b;

Boolean b1, b2;

Boolean b3 is if b
then b1 else b2;

Boolean b;

Boolean b1, b2;

Boolean b3 = if b
then b1 else b2;

𝔹: 𝑏, 𝔹: 𝑏1, 𝔹: 𝑏2

𝔹: 𝑏3 = {
𝑏1 if 𝑏 = 𝑡𝑟𝑢𝑒

𝑏2 else

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 90 of 136 © EDF SA

Name Natural language
syntax

Mathematical syntax Semantics Reference

At event

Boolean b1;

Clock c;

Boolean b2 is b1 at c;

Boolean b1;

Clock c;

Boolean b2 = b1 at c;

𝔹: 𝑏1, 𝒟: 𝑐

𝔹: 𝑏2 = 𝑏1(@ 𝑡 Ω⁄)
3.7.1

The expression

b2 is b1 at c;

takes the value of b1 at every tick of clock c. The value of b2 between two ticks t1 and t2 is equal to
the value of b1 at tick t1.

Example 1: verifying that b1 is equal to b2 when y becomes positive.

Boolean b1;

Boolean b2;

Real y;

Clock c is new Clock (y > 0);

Boolean b is (b1 == b2) at c;

It is also possible to write:

Boolean b is (b1 at c) == (b2 at c);

4.9. Type Event

4.9.1. Constructors

Natural language syntax Mathematical syntax Semantics Reference

Boolean b;

Event e is new Event b;

Boolean b;

Event e = new Event b;

𝔹: 𝑏

ℰ: 𝑒 = 𝑏 ↑ (first occurrence of

𝑏 ↑)

3.3

4.9.2. Operators

Name Natural language
syntax

Mathematical syntax Semantics Reference

Projection

Event e1;

Clock c;

Event e2 is e1 proj c;

Event e1;

Clock c;

Event e2 = proj (e1,
c);

ℰ: 𝑒1, 𝒟: 𝑐

ℰ: 𝑒2 = 𝑒1 𝑐⁄
3.7.1

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 91 of 136 © EDF SA

Name Natural language
syntax

Mathematical syntax Semantics Reference

Bounded
projection

Event e1;

Clock c;

Real d;

Event e2 is e1 proj(d)
c;

Event e1;

Clock c;

Real d;

Event e2 = e1 proj
(e1, c, d);

ℰ: 𝑒1, 𝒟 ∶ 𝑐, ℝ+: 𝑑

ℰ: 𝑒2 = 𝑒1 𝑑𝑐⁄
3.7.2

Delay

Event e1;

Real d;

Event e2 is e1 + d;

Event e1;

Real d;

Event e2 = e1 + d;

ℰ: 𝑒1, ℝ+: 𝑑

ℰ: 𝑒2 = 𝑒1 + 𝑑
3.5.8

Elapsed
Event e1, e2;

Real d is e2 - e1;

Event e1, e2;

Real d = e2 - e1;

ℰ: 𝑒1, ℰ: 𝑒2,

ℝ+: 𝑑 = 𝑒2 − 𝑒1
3.5.7

Before

Event e1, e2;

Boolean b is e1 <=
e2;

Event e1, e2;

Boolean b = e1 <=

ℰ: 𝑒1, ℰ: 𝑒2,

ℝ+: 𝑏 = 𝑒1 ≤ 𝑒2
3.5.3

After

Event e1, e2;

Boolean b is e1 >=
e2;

Event e1, e2;

Boolean b = e1 >=
e2;

ℰ: 𝑒1, ℰ: 𝑒2,

ℝ+: 𝑏 = 𝑒1 ≥ 𝑒2
3.5.4

Strictly
before

Event e1, e2;

Boolean b is e1 < e2;

Event e1, e2;

Boolean b = e1 < e2;

ℰ: 𝑒1, ℰ: 𝑒2,

ℝ+: 𝑏 = 𝑒1 < 𝑒2
3.5.3

Strictly after
Event e1, e2;

Boolean b is e1 > e2;

Event e1, e2;

Boolean b = e1 > e2;

ℰ: 𝑒1, ℰ: 𝑒2,

ℝ+: 𝑏 = 𝑒1 > 𝑒2
3.5.4

Elapsed
physical
time

Event e;

Real d is time from e;

Event e;

Real d is time - e;

ℰ: 𝑒

ℝ+: 𝑑 = ℭ ↑ − 𝑒

3.3

3.5.7

Conjunction
Event e1, e2;

Clock e is e1 and e2;

Event e1, e2;

Clock e = e1 and e2;

ℰ: 𝑒1, ℰ: 𝑒2,

𝒟: 𝑐 = 𝑒1 ∧ 𝑒2
3.5.9

Disjunction
Event e1, e2;

Clock e is e1 or e2;

Event e1, e2;

Clock e = e1 or e2;

ℰ: 𝑒1, ℰ: 𝑒2,

𝒟: 𝑐 = 𝑒1 ∨ 𝑒2
3.5.10

4.10. Type Clock

4.10.1.Constructors

Natural language syntax Mathematical syntax Semantics Reference

Boolean b;

Clock c is new Clock b;

Boolean b;

Clock c = new Clock b;

𝔹: 𝑏

𝒟: 𝑐 = 𝑐(𝑏)
3.6

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 92 of 136 © EDF SA

4.10.2.Operators

Name Natural language
syntax

Mathematical syntax Semantics Reference

Delay

Clock c1;

Integer d;

Clock c2 is c1 + d;

Clock c1;

Integer d;

Clock c2 = c1 + d;

𝒟: 𝑐1, ℕ: 𝑑

𝒟: 𝑐2 = 𝑐1 + 𝑑
3.7.3

Projection
Clock c1, c2;

Clock c is c1 proj c2;

Clock c1, c2;

Clock c = proj (c1,
c2);

𝒟: 𝑐1, 𝒟: 𝑐2

𝒟: 𝑐 = 𝑐1 𝑐2⁄
3.7.1

Bounded
projection

Clock c1, c2;

Real d;

Clock c is c1 proj (d)
c2;

Clock c1, c2;

Real d;

Clock c = proj (c1,
c2, d);

𝒟: 𝑐1, 𝒟: 𝑐2, ℝ+: 𝑑

𝒟: 𝑐 = 𝑐1 𝑑𝑐2⁄
3.7.2

Current tick
Clock c;

Event e is tick c;

Clock c;

Event e = tick (c);

𝒟: 𝑐

ℰ: 𝑒 = 𝑐|𝑐|
3.6

Filter

Clock c1, c2;

Operator cond [
Boolean] Integer i =
value (i);

Clock c2 is c1 filter
cond tick;

Clock c1, c2;

Operator cond [
Boolean] Integer i =
value (i);

Clock c2 = c1 filter
cond tick;

𝒟: 𝑐1, 𝕆(ℕ ⟶ 𝔹): cond

𝒟: 𝑐2 = 𝑐1 (cond(rank(∗)))

3.6

3.7.7

Conjunction
of clocks

Clock c1, c2;

Clock c is c1 and c2;

Clock c1, c2;

Clock c = c1 and c2;

𝒟: 𝑐1, 𝒟: 𝑐2

𝒟: 𝑐 = 𝑐1 ∧ 𝑐2
3.7.5

Conjunction
of event and
clock

Event e;

Clock c1

Clock c2 is e and c1;

Event e;

Clock c1

Clock c2 = e and c1;

ℰ: 𝑒, 𝒟: 𝑐1

𝒟: 𝑐2 = 𝑒 ∧ 𝑐1
3.5.9

Conjunction
of clock and
event

Clock c1

Event e;

Clock c2 is c1 and e;

Clock c1

Event e;

Clock c2 = c1 and e;

𝒟: 𝑐1, ℰ: 𝑒

𝒟: 𝑐2 = 𝑐1 ∧ 𝑒
3.5.9

Disjunction
of clocks

Clock c1, c2;

Clock c is c1 or c2;

Clock c1, c2;

Clock c = c1 or c2;

𝒟: 𝑐1, 𝒟: 𝑐2

𝒟: 𝑐 = 𝑐1 ∨ 𝑐2
3.7.6

Disjunction
of event and
clock

Event e;

Clock c1

Clock c2 is e or c1;

Event e;

Clock c1

Clock c2 = e or c1;

ℰ: 𝑒, 𝒟: 𝑐1

𝒟: 𝑐2 = 𝑒 ∨ 𝑐1
3.5.10

Disjunction
of clock and
event

Clock c1

Event e;

Clock c2 is c1 or e;

Clock c1

Event e;

Clock c2 = c1 or e;

𝒟: 𝑐1, ℰ: 𝑒

𝒟: 𝑐2 = 𝑐1 ∨ 𝑒
3.5.10

Number of
ticks

Clock c;

Integer n is card c;

Clock c;

Integer n = card (c);

𝒟: 𝑐

ℕ: 𝑛 = |𝑐|
3.6

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 93 of 136 © EDF SA

4.11. Type Period

4.11.1.Constructors

Natural language syntax Mathematical syntax Semantics Reference

Event e1, e2;

Period P is [e1, e2];

Event e1, e2;

Period P = [e1, e2];

ℰ: 𝑒1, ℰ: 𝑒2

𝒫: 𝑃 = [𝑒1, 𝑒2]
3.8

Event e1, e2;

Period P is] e1, e2];

Event e1, e2;

Period P =] e1, e2];

ℰ: 𝑒1, ℰ: 𝑒2

𝒫: 𝑃 =]𝑒1, 𝑒2]
3.8

Event e1, e2;

Period P is [e1, e2 [;

Event e1, e2;

Period P = [e1, e2 [;

ℰ: 𝑒1, ℰ: 𝑒2

𝒫: 𝑃 = [𝑒1, 𝑒2[
3.8

Event e1, e2;

Period P is] e1, e2 [;

Event e1, e2;

Period P =] e1, e2 [;

ℰ: 𝑒1, ℰ: 𝑒2

𝒫: 𝑃 =]𝑒1, 𝑒2[
3.8

4.11.2.Operators

Name Natural language
syntax

Mathematical syntax Semantics Reference

Opening
event

Period P;

Event e is P start;

Period P;

Event e = start (P);

𝒫: 𝑃

ℰ: 𝑒 = 𝑃 ↑
3.8

Closing
event

Period P;

Event e is P end;

Period P;

Event e = end (P);

𝒫: 𝑃

ℰ: 𝑒 = 𝑃 ↓
3.8

4.12. Type Periods

4.12.1.Constructors

Natural language syntax Mathematical syntax Semantics Reference

Period P1, P2, …, Pn;

Periods P is { P1, P2, …,
Pn };

Period P1, P2, …, Pn;

Periods P = { P1, P2, …,
Pn };

𝒫: 𝑃1, 𝒫: 𝑃2, … , 𝒫: 𝑃𝑛

2𝒫: 𝑃 = {𝑃1, 𝑃2, … , 𝑃𝑛}
3.9

Clock c1, c2;

Periods P is [c1, c2];

Clock c1, c2;

Periods P = [c1, c2];

𝒟: 𝑐1, 𝒟: 𝑐2

2𝒫: 𝑃 = Π([𝑐1, 𝑐2])
3.9

Clock c1, c2;

Periods P is] c1, c2];

Clock c1, c2;

Periods P =] c1, c2];

𝒟: 𝑐1, 𝒟: 𝑐2

2𝒫: 𝑃 = Π(]𝑐1, 𝑐2])
3.9

Clock c1, c2;

Periods P is [c1, c2 [;

Clock c1, c2;

Periods P = [c1, c2 [;

𝒟: 𝑐1, 𝒟: 𝑐2

2𝒫: 𝑃 = Π([𝑐1, 𝑐2[)
3.9

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 94 of 136 © EDF SA

Clock c1, c2;

Periods P is] c1, c2 [;

Clock c1, c2;

Periods P is] c1, c2 [;

𝒟: 𝑐1, 𝒟: 𝑐2

2𝒫: 𝑃 = Π(]𝑐1, 𝑐2[)
3.9

4.12.2.Operators

Name Natural language
syntax

Mathematical syntax Semantics Reference

While

Periods P1;

Periods P2;

Periods P is P2 while
P1;

Periods P1;

Periods P2;

Periods P = while
(P2, P1);

2𝒫: 𝑃1, 2𝒫: 𝑃2

 2𝒫 : 𝑃 = 𝑃1 ⊃ 𝑃2
 3.10.2

4.13. Type Operator

4.13.1.Constructors

Natural language syntax Semantics Reference

Type T, T1, T2, …, Tn;

Operator [T] w1 T1 e1 w2 T2 e2 … wn Tn en =
value;

𝑓: 𝑇1 × 𝑇2 × … × 𝑇𝑛 ⟶ 𝑇

(𝑒1, 𝑒2, … , 𝑒𝑛) ⟼ 𝑓(𝑒1, 𝑒2, … , 𝑒𝑛)
= 𝑒𝑥𝑝𝑟

𝒞(𝑓) = ∅

3.17

3.19

Mathematical syntax Semantics Reference

Type T, T1, T2, …, Tn;

Operator f = new Operator [T] (T1 e1, T2 e2, … ,
Tn en) = value;

𝑓: 𝑇1 × 𝑇2 × … × 𝑇𝑛 ⟶ 𝑇

(𝑒1, 𝑒2, … , 𝑒𝑛) ⟼ 𝑓(𝑒1, 𝑒2, … , 𝑒𝑛)
= 𝑒𝑥𝑝𝑟

𝒞(𝑓) = ∅

3.17

3.19

Mixed natural language / mathematical syntax Semantics Reference

Type T, T1, T2, …, Tn;

Operator f is new Operator [T] w1 T1 e1 w2 T2 e2
… wn Tn en = value;

𝑓: 𝑇1 × 𝑇2 × … × 𝑇𝑛 ⟶ 𝑇

(𝑒1, 𝑒2, … , 𝑒𝑛) ⟼ 𝑓(𝑒1, 𝑒2, … , 𝑒𝑛)
= 𝑒𝑥𝑝𝑟

𝒞(𝑓) = ∅

3.17

3.19

Operators always return a value whose type is declared between square brackets. Therefore, in
expression Operator [T] w1 T1 e1 w2 T2 e2 … wn Tn en = value; the type of value is T.

Three syntaxes are possible for the declaration and definition of operators:

1. Natural language syntax: the name of the operator is declared by several words w1, w2, …,
wn that can have at most one function argument before the first word, between two words, or
after the last word.

A word of the name of an operator in the natural language syntax is:

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 95 of 136 © EDF SA

word: ident | quote-ident

quote-ident: ''' { quote-char } '''

quote-char: non-digit | digit | '!' | '&' | '|' | '+' | '-' | '*' |

'/' | '%' | '<' | '>' | '=' | '^' | '_' | ' '

The declaration and definition of an operator is

op-expr: "Operator" '['type-ident']' ([type-ident ident] {word [type-
ident ident]}) '=' value

type-ident: ident

The call of an operator is

op-call: [ident] | {word [ident]}

ident and value are defined in Section 4.3.

The signature of the operator is obtained by concatenating all words and type names of the
operator declaration separated by the $ sign. Therefore, the $ sign cannot be used in CRML
expressions.

For an operator declaration such as Operator [T] w1 T1 e1, w2 T2 e2, …, wn Tn en, the
signature is T$w1$T1$w2$T2…wnTn. The function call that computes the operator is then
T y = T$w1$T1$w2$T2…wnTn (e1, e2, …, en).

Operator overloading is possible because operators with declarations made of identical words
and different type names have different signatures. For instance, operators Operator [T] w T1
and Operator [T] w T2 have the same operator name (w), but different signatures (TwT1
and TwT2).

Example 1: function that returns a clock with the ticks of another clock c that are within a given
time period P.

Operator [Clock] ticks Clock c inside Period P = c filter (tick >= P start) and (tick <= P end);

Period P is value;

Clock c1 is value;

Clock c2 is ticks c1 inside P;

The function is call is Clock c2 = Clock$ticks$Clock$inside$Period (c1, P).

Example 2: disjunction of two Booleans.

Operator [Boolean] Boolean b1 or Boolean b2 = not (not b1 and not b2);

Boolean b1 is value;

Boolean b2 is value;

Boolean b is b1 or b2;

The function call is Boolean b = Boolean$Boolean$or$Boolean (b1, b2).

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 96 of 136 © EDF SA

Example 3: definition of the <= operator in the domain of integers from the operators < and ==

Operator [Boolean] Integer n1 '<=’ Integer n2 = (n1 < n2) or (n1 == n2);

Integer n1 is value;

Integer n2 is value;

Boolean b is n1 '<=’ n2;

The function call is Boolean b = Boolean$Integer$'<=’ $Integer (n1, n2).

2. Mathematical syntax: the name of the operator is made of one word only and the arguments
are placed in a comma separated list enclosed in parenthesis, as it is customary when using
mathematical notation. The signature of the operator is obtained by concatenating the name of
the operator with the names of the argument types.

Example 4: function that returns a clock with the ticks of another clock c that are within a given
time period P.

Operator subClock = new Operator [Clock] (Clock c, Period P) = c filter (tick >= P start) and
(tick <= P end);

Period P is value;

Clock c1 is value;

Clock c2 = subClock (c1, P);

The function call is Clock c2 = Clock$subClock$Clock$Period (c1, P).

3. Mixed natural language and mathematical syntax: the name of the operator is declared using
the natural language syntax, and the operator is assigned to a variable that is the operator’s
name in the mathematical syntax. Then the operator can be called using the natural language
or the mathematical syntax. The signature of the operator is the natural language syntax
signature.

Example 5: function that returns a clock with the ticks of another clock c that are within a given
time period P.

Operator f is new Operator [Clock] ticks Clock c inside Period P = c filter (tick >= P start) and
(tick <= P end);

Period P is value;

Clock c1 is value;

Clock c2 is ticks c1 inside P; // Natural language syntax call

Clock c2 = f (c1, P); // Mathematical syntax call

The function call is Clock$ticks$Clock$inside$Period (c1, P), thus corresponding to the natural
language syntax.

Example 6: count function, cf. Eq. (82). Natural language notation.

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 97 of 136 © EDF SA

Operator [Integer] count [Boolean] b inside [Period] P = card ticks new Clock b inside P;

Example 7: count function, cf. Eq. (82). Mathematical notation.

Operator count = new Operator [Integer] (Boolean] b, [Period] P) = card (subClock (new Clock b,
P));

Example 8: count function, cf. Eq. (82). Mixed natural language / mathematical notation.

Operator count = Operator [Integer] count [Boolean] b inside [Period] P = card (subClock (new
Clock b, P));

Operator count = Operator [Integer] count [Boolean] b inside [Period] P = card ticks new Clock b
inside P;

Operator count = Operator [Integer] count [Boolean] b inside [Period] P = card (ticks new Clock b
inside P);

4.14. Type Template

4.14.1.Constructors

Natural language syntax Semantics Reference

Template w1 e1 w2 e2 … wn en = value;

𝑓: 𝔹𝑛 ⟶ 𝔹

(𝑒1, 𝑒2, … , 𝑒𝑛) ⟼ 𝑓(𝑒1, 𝑒2, … , 𝑒𝑛)
= 𝑒𝑥𝑝𝑟

3.18

Mathematical syntax Semantics Reference

Template f = new Template (e1, e2, … , en) =
value;

𝑓: 𝔹𝑛 ⟶ 𝔹

(𝑒1, 𝑒2, … , 𝑒𝑛) ⟼ 𝑓(𝑒1, 𝑒2, … , 𝑒𝑛)
= 𝑒𝑥𝑝𝑟

3.18

Mixed natural language / mathematical syntax Semantics Reference

Template f is new Template w1 e1 w2 e2 … wn en
= value;

𝑓: 𝔹𝑛 ⟶ 𝔹

(𝑒1, 𝑒2, … , 𝑒𝑛) ⟼ 𝑓(𝑒1, 𝑒2, … , 𝑒𝑛)
= 𝑒𝑥𝑝𝑟

3.18

Templates are operators on Booleans. The syntactic rules for templates are therefore the same as for
operators, with the exception that types are not specified.

Example 1: disjunction of two Booleans.

Template b1 or b2 = not (not b1 and not b2);

The name of the function is or and the function is called as follows:

Boolean b1 is value;

Boolean b2 is value;

Boolean b is b1 or b2;

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 98 of 136 © EDF SA

The signature of the function is Boolean$Boolean$or$Boolean.

4.15. Type Category

4.15.1.Constructors

Natural language syntax Semantics Reference

Operator f1, f2, …, fn;

Operator g1, g2, …, gn;

Category w = { (f1, g1), (f2, g2), …, (fn, gn) };

𝒞(𝔻1 ⟶ 𝔻2): 𝑐

 𝑓𝑖 ⟼ 𝑔𝑖 = 𝑐(𝑓𝑖)
 3.19

Mathematical syntax Semantics Reference

Operator f1, f2, …, fn;

Operator g1, g2, …, gn;

Category c = { (f1, g1), (f2, g2), …, (fn, gn) };

𝒞(𝔻1 ⟶ 𝔻2): 𝑐

 𝑓𝑖 ⟼ 𝑔𝑖 = 𝑐(𝑓𝑖)
 3.19

Mixed natural language / mathematical syntax Semantics Reference

Operator f1, f2, …, fn;

Operator g1, g2, …, gn;

Category c is new Category w = { (f1, g1), (f2, g2),
…, (fn, gn) };

𝒞(𝔻1 ⟶ 𝔻2): 𝑐

 𝑓𝑖 ⟼ 𝑔𝑖 = 𝑐(𝑓𝑖)
 3.19

Example 1: Example 1 in Section 3.193.12.1.

Category increasing = { (>, >), (>=, >=), (==, >), (<>, >), (<, >=), (<=, >) };

4.15.2. Operators

Name Natural language
syntax

Mathematical syntax Semantics Reference

Association

Category c;

Operator f;

Category {} C is
associate c with f;

Category c;

Operator f;

Category {} C =
associate (c, f);

𝒞(𝔻1 ⟶ 𝔻2): 𝑐

𝕆(𝔻3 ⟶ 𝔻4): 𝑓

𝑐 ∈ 𝒞(𝑓)

2𝒞(∗⟶∗): 𝐶 = 𝒞(𝑓)

3.19

The associate operator inserts category c into the set of categories associated with f and returns the

new set of categories associated with f. The notation 2𝒞(∗⟶∗): 𝐶 means that the set 𝐶 contains
categories of any sources and targets.

Example 1:

Operator f;

Category increasing = { (>, >), (>=, >=), (==, >), (<>, >), (<, >=), (<=, >) };

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 99 of 136 © EDF SA

Category {} C is associate increasing with f;

The value of C is the set of categories { increasing, … } where … denotes the categories previously
associated with f.

4.16. Sets

4.16.1.Constructors

Natural language syntax Mathematical syntax Semantics Reference

// Non-empty typed set

Type T;

T e1, e2, …, en;

[T {} S is] { e1, e2, …, en };

// Non-empty typed set

Type T;

T e1, e2, …, en;

[T {} S =] { e1, e2, …, en };

𝑇: 𝑒1, 𝑇: 𝑒2, … , 𝑇: 𝑒𝑛

𝑇: 𝑆 = {𝑒1, 𝑒2, … , 𝑒𝑛}
3.20.1

// Empty typed set

Type T;

[T {} S is] {};

// Empty typed set

Type T;

[T {} S =] {};

𝑇: 𝑆 = ∅ 3.20.1

// Special set

Type T;

T S is { expr };

// Special set

Type T;

T S = { expr };

𝒞: 𝑆

ℳ: 𝑆

ℒ: 𝑆

𝒯: 𝑆

3.23

3.24

3.25

3.26

There is no dedicated keyword to denote a set.

There are two kinds of sets: typed sets and special sets.

A typed set is a set such that all its elements are of the same type, which is the type of the typed set. A
typed set is declared as T {} S, where T is the type of its elements.

A special set is a set that can contain elements of different types. Special sets are of the following
types only: class, model, library, package. The declaration of special sets does not feature curly
braces {} after the type name, e.g. model M is { expr } (and not model {} M is { expr }).

Other time-dependent sets such as Clock and Periods have special features such that they are not
considered as typed sets and are handled separately.

The identifier is omitted for anonymous typed sets and can be omitted for the empty set.

4.16.2.Operators

Name Natural language
syntax

Mathematical syntax Semantics Reference

Union of
two sets

Type T;

T {} S1, S2;

T {} S is S1 union S2;

Type T;

T {} S1, S2;

T {} S = S1 union S2;

2𝑇: 𝑆1, 2𝑇: 𝑆2

2𝑇: 𝑆 = 𝑆1 ∪ 𝑆2
3.20.1

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 100 of 136 © EDF SA

Name Natural language
syntax

Mathematical syntax Semantics Reference

Union of an
element
with a set

Type T;

T e1;

T {} S2;

T {} S is e1 union S2;

Type T;

T {} e1;

T {} S2;

T {} S = e1 union S2;

𝑇: 𝑒1, 2𝑇: 𝑆2

2𝑇: 𝑆 = {𝑒1} ∪ 𝑆2
3.20.1

Union of
two
elements

Type T;

T e1, e2;

T {} S is e1 union e2;

Type T;

T e1, e2;

T {} S is e1 union e2;

𝑇: 𝑒1, 𝑇: 𝑒2

2𝑇: 𝑆 = {𝑒1} ∪ {𝑒2}
3.20.1

Flattening
of a set

Type T;

T {} S1;

T {} S2 is flatten S1;

Type T;

T {} S1;

T {} S2 = flatten S1;

2𝑇: 𝑆1

2𝑇: 𝑆2 =⋓ 𝑆1
3.20.1

Number of
elements

Type T;

T {} S;

Integer n is card S;

Type T;

T {} S;

Integer n = card (S);

2𝑇: 𝑆

ℕ: 𝑛 = |𝑆|
3.20.1

Filter

Type T;

T {} S1;

Operator [Boolean]
cond T e = value;

T {} S2 is filter S1
cond element;

Type T;

T {} S1;

Operator [Boolean]
cond (T e) = value;

T {} S2 = filter (S1
(cond (element));

2𝑇: 𝑆1, 𝕆(𝑇 ⟶ 𝔹): cond

2𝑇: 𝑆2 = 𝑆1(cond(∗))
3.21.3

Left unary
operator

Type T1, T2;

T1 {} S1;

Operator [T2] op T1
e = value;

T2 {} S2 is op S1;

Type T1, T2;

T1 {} S1;

Operator [T2] op T1
e = value;

T2 {} S2 = op S1;

2𝑇1: 𝑆1, 𝕆(𝑇1 ⟶ 𝑇2): 𝑜𝑝

2𝑇2: 𝑆2 = 𝑜𝑝 𝑆1
3.21.1

Right unary
operator

Type T1, T2;

T1 {} S1;

Operator [T2] T1 e
op = value;

T2 {} S2 is S1 op;

Type T1, T2;

T1 {} S1;

Operator [T2] T1 e
op = value;

T2 {} S2 = S1 op;

2𝑇1: 𝑆1, 𝕆(𝑇1 ⟶ 𝑇2): 𝑜𝑝

2𝑇2: 𝑆2 = 𝑆1 𝑜𝑝
3.21.1

Binary
operator

Type T;

T {} S1, S2;

Operator [T] T e1
op T e2 = value;

T e is S1 op S2;

Type T;

T {} S1, S2;

Operator [T] T e1
op T e2 = value;

T e = S1 op S2;

2𝑇: 𝑆1, 2𝑇: 𝑆2, 𝕆(𝑇 × 𝑇
⟶ 𝑇): 𝑜𝑝

𝑇: 𝑒 = 𝑆1 𝑜𝑝 𝑆2

3.21.2

All operators except left, right and binary operators, apply also to special sets.

The union operator applies to all sets, but the result of the union of two sets (the merged set) must be
a legal set. For instance, the union of a library with a model should be declared as a model, and the
library should be flattened if it contains sub-libraries, because models can contain all elements of a

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 101 of 136 © EDF SA

library, except libraries. The merged set provides a common namespace for the elements of both sets,
so that elements from one set can be used by elements of the other set without using paths. This is
useful when using operators and templates in the natural language syntax. However, one must ensure
that all identifiers are unique within the merged set.

Example 1: negation of a set of Booleans.

Boolean R1, R2, R3, R4;

Boolean S is not { R1, R2, R3, R4 };

The value of S is { not R1, not R2, not R3, not R4}.

Note that { R1, R2, R3, R4 } is an anonymous set.

Example 2: frame period P applied to a set of time periods.

Periods P;

Periods P1, P2, P3, P4;

Periods {} S is { P1, P2, P3, P4 } while P;

The value of S is { P1 while P, P2 while P, P3 while P, P4 while P }.

Example 3: getting the values of same attribute for a set of objects.

class C is {

Real x is external;

Real y is external;

};

C {} S is { C O1(x is 1, y is 1), C O2(x is 2, y is 1), C O3(x is 3, y is 1) } ;

Real {} R is S.x;

The value of R is { 1, 2, 3 }.

Example 4: conjunction of a set of Booleans.

Boolean R1, R2, R3, R4;

Boolean R is and { R1, R2, R3, R4 };

The value of R is R1 and R2 and R3 and R4.

Example 5: inference chain of a set of requirements

Template b1 imply b2 = not b1 or b2;

Boolean R1, R2, R3, R4;

Boolean R is imply { R1, R2, R3, R4 };

The value of R is R1 imply R2 imply R3 imply R4.

Example 6: extracting requirements from a model.

model M is { …, R1, R2, …, R3, R4 };

where R1, R2, R3, R4 are of the type Requirement, and … stands for elements of other types than

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 102 of 136 © EDF SA

Requirement.

The set of requirements of M is obtained with

Requirement {} R is filter M (type element == Requirement);

The value of R is { R1, R2, R3, R4 }.

Example 7: extracting from a set of pieces of equipment the pieces of equipment that are in operation

class Equipment is {

String id; // Equipment identification

Boolean inOperation is external; // inOperation is true if the equipment is in operation

};

Equipment {} S is filter { Equipment (id is "E1"), Equipment (id is "E2") } (element.inOperation == true);

Example 8: union of elements in a set

Requirement {} R1 is { a1, a2, { b1, b2, b3, { c1, c2 } }, { b3, b4 }, a3 };

Requirement {} R2 is union R1;

Then R2 = a1 union a2 union { b1, b2, b3, { c1, c2 } } union { b3, b4 } union a3

 = { a1, a2 } union { b1, b2, b3, { c1, c2 } } union { b3, b4 } union a3

 = { a1, a2, b1, b2, b3, { c1, c2 }, b3, b4, a3 }

Example 9: flattening of a set

Requirement {} R1 is { a1, a2, { b1, b2, b3, { c1, c2 } }, { b3, b4 }, a3 };

Requirement {} R2 is flatten R1;

The value of R2 is { a1, a2, b1, b2, b3, c1, c2, b4, a3 }.

4.17. Type type

4.17.1.Constructors

Natural language syntax Mathematical syntax Semantics Reference

type T2 is (T1 x is value
(a1, a2, …, an)) {

Type D1, D2, …, Dn;

D1 a1 [is value];

D2 a2 [is value];

 …

Dn an [is value];

};

type T2 = (T1 x = value
(a1, a2, …, an)) {

Type D1, D2, …, Dn;

D1 a1 [= value];

D2 a2 [= value];

 …

Dn an [= value];

};

𝔗: 𝕋2 = 𝕋1: 𝑥(𝑎1, 𝑎2, … 𝑎𝑛)

+ {𝔻1: 𝑎1, 𝔻2: 𝑎2, … 𝔻𝑛: 𝑎𝑛}

3.14.2
3.14.3

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 103 of 136 © EDF SA

4.17.2.Operators

Name Natural language
syntax

Mathematical syntax Semantics Reference

Alias

type T1 is value;

String s is value;

type T2 is T1 alias s;

type T1 = value;

String s = value;

type T2 = alias (T1,
s);

𝔗: 𝑇1, 𝕊: 𝑠

𝔗: 𝑇2 = 𝑇1(𝑠)
3.14.5

Partial type
partial type T is
value;

partial type T =
value;

partial 𝔗: 𝑇
3.14.4

Forbid

type T1 is value;

type U1 is value;

…

type Un is value;

Operator f1 is new
Operator [U1] w11
T1 e1 … w1p1 T1
ep1 = value;

…

Operator fn is new
Operator [Un] wn1
T1 e1 … wnpn T1
epn = value;

type T2 is T1 forbid {
f1, …, fn };

type T1 = value;

type U1 = value;

…

type Un = value;

Operator f1 =
Operator [U1] w11
T1 e1 … w1p1 T1
ep1 = value;

…

Operator fn =
Operator [Un] wn1
T1 e1 … wnpn T1
epn = value;

type T2 = T1 forbid {
f1, …, fn };

𝔗: 𝑇1, 𝔗: 𝑇2 ⊂ 𝑇1

𝔗: 𝑈1, … , 𝔗: 𝑈𝑛

𝑓1: 𝑇1
𝑝1 ⟶ 𝑈1

…

𝑓𝑛: 𝑇1
𝑝𝑛 ⟶ 𝑈𝑛

𝑓1 ∉ 𝕆(𝑇2 ⟶∗)

…

𝑓𝑛 ∉ 𝕆(𝑇2 ⟶∗)

3.14.2

Type
equality

type T1 is value;

type T2 is value;

Boolean b is T1 ==
T2;

type T1 is value;

type T2 is value;

Boolean b = (T1 ==
T2);

𝔗: 𝑇1, 𝔗: 𝑇2

𝔹: 𝑏 = (𝑇1 = 𝑇2)
3.14.1

It is possible to combine operators alias, partial and forbid in the same statement by writing partial
type: T is value alias s forbid { f1, …, fn }.

The alias s must be enclosed between square brackets when using special characters, e.g. s = [m/s2],
because '/' is a special character.

Example 1: defining the type of physical quantities in SI units by extending the type of real numbers.

partial type Quantity is (Real q is rate*u + offset) {

String SIUnit; // SI unit for quantity q

String userUnit; // User unit for quantity q

Real u; // Quantity q expressed in user units

Real rate; // Conversion rate between user units and SI units

Real offset; // offset between user units and SI units

};

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 104 of 136 © EDF SA

Partial indicates that the type Quantity must be extended or specialized.

When writing

Quantity x = Quantity (SIUnit = "Pa", userUnit = "bar", rate = 1.e5, offset = 0, u = 3);

the expression (Real q is rate*u + offset) in the definition of Quantity computes the value of x from the
value of u: x = rate*u + offset. The value of u can be computed back from the value of x using the
automatically inverted formula (x – offset) / rate (thus rate must be different from zero).

It is also possible to write

Real x = Quantity (SIUnit = "Pa", userUnit = "bar", rate = 1.e5, offset = 0, u = 3);

because all elements of type Quantity are elements of type Real as the type Quantity extends the type
Real. Then the expression (Real q is rate*u + offset) can be seen as converting a quantity expressed
in the specific type Quantity to the general type of Real.

Example 2: defining physical units for pressures by specializing the domain of physical quantities.

partial type Pressure is Quantity (SIUnit = "Pa") ;

Partial indicates that the type Pressure must extended or specialized.

type PressureBar is Pressure (userUnit = "bar", rate = 1.e5, offset = 0) ;

Example 3: defining physical units for pressures with an alias.

type PressurePa is Pressure (userUnit = "Pa", rate = 1, offset = 0) alias Pa;

type PressureBar is Pressure (userUnit = "bar", rate = 1.e5, offset = 0) alias bar;

Example 4: defining physical units for absolute temperatures and forbidding the use of temperature
addition and multiplication.

partial type AbsoluteTemperature is Quantity (SIUnit = "K") forbid { +, * };

+ and * are operators on type Real. Therefore, they apply to all subtypes of Real. Thus, they apply to
AbsoluteTemperature. Because it is not physically meaningful to add or multiply absolute
temperatures, these operators must be forbidden on AbsoluteTemperature.

type AbsoluteTemperatureKelvin is AbsoluteTemperature (userUnit = "K", rate = 1, offset = 0) alias K;

type AbsoluteTemperatureCelsius is AbsoluteTemperature (userUnit = "Celsius", rate = 1, offset =
273.15) alias Celsius;

Example 5: defining the physical unit for acceleration.

type Length is Quantity (SIUnit = "m", userUnit = "m", rate = 1, offset = 0) alias K;

partial type Time is Quantity (SIUnit = "s");

type TimeSecond is Time (userUnit = "s", rate = 1, offset = 0) alias s;

type Hour is Time (userUnit = "h", rate = 3600, offset = 0) alias h;

type Acceleration is Quantity (SIUnit = "m/s2", userUnit = "m/s2", rate = 1, offset = 0) alias [m/s2];

The alias is enclosed in square brackets because the special character '/' is used.

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 105 of 136 © EDF SA

Note that the quantity Acceleration can be defined even if the quantities Time and Length are not
defined. To relate the three quantities together, the definition of Quantity should be extended in order
to accommodate dimensional analysis. For instance, a new attribute SIDimension could be added to
express the SIunit in the fundamental units of the considered unit system (SI, CGS, etc.). The
extended definition of Quantity would look like

partial type Quantity is (Real q is rate*u + offset) {

String SIUnit; // SI unit for quantity q

String userUnit; // User unit for quantity q

String SIDimension; // Unit for quantity q expressed in the fundamental units

String SIFUnits = "[m][kg][s][K]"; // Fundamental units of the chosen unit system

Real u; // Quantity q expressed in user units

Real rate; // Conversion rate between user units and SI units

Real offset; // offset between user units and SI units

};

For Pressure, SIDimension = "[kg][m-1][s-2]".

Example 6: defining a type for requirements.

Some temporal operators on Booleans have been introduced for the evaluation of requirements only.
They should not be used in requirement models. This can be enforced by forbidding these temporals
operators on Booleans that represent requirements.

type Requirement is Boolean forbid { *, +, integrate };

4.18. Elements

4.18.1.Constructors

Natural language syntax Mathematical syntax Semantics Reference

Type T;

T x is value;

Type T;

T x = value;

𝑥 ∈ 𝔻

𝑇: 𝑥 = 𝑒𝑥𝑝𝑟
3.16

Type T;

T x is external;

Type T;

T x = external;

𝑥 ∈ 𝔻

𝑇: 𝑥
3.16

There are three kinds of elements: variables, sets and operators.

Type T denotes any domain.

4.18.2.Operators

Name Natural language
syntax

Mathematical syntax Semantics Reference

External
Type T;

T x is external;

Type T;

T x is external;

𝑥 ∈ 𝕍

∗. 𝑇: 𝑥

3.22

3.24.1

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 106 of 136 © EDF SA

Name Natural language
syntax

Mathematical syntax Semantics Reference

Constant
Type T;

constant T x;

Type T;

constant T x;

𝑥 ∈ 𝔹 ∪ ℤ ∪ ℝ

𝑇: 𝑥 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
3.16

Parameter
Type T;

parameter T x;

Type T;

parameter T x;

𝑥 ∈ 𝔹 ∪ ℤ ∪ ℝ ∪ 𝕊

𝑇: 𝑥 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
3.16

Get type

Type T;

T x is value;

Type T is new type x;

Type T;

T x is value;

Type T = new type (x);

𝑥 ∈ 𝔻

𝑇: domain(𝑥)
3.14.1

Only variables, objects and sets can have external values.

Variables with external values cannot be assigned any value within the requirement model. Their
values are provided by the binding mechanism.

To enforce the binding mechanism:

• A variable can have an external value in classes only.

• In models, only objects and sets can have external values.

Only variables that belong to the following types can be declared as constant: Boolean, Integer, Real.

A parameter is a variable constant over one simulation run. A parameter can have different values for
different simulation runs. Only variables that belong to the following types can be declared as
parameter: Boolean, Integer, Real, String.

Example 1: defining a variable of type Quantity of Example 1 in Section 4.17.

No variable of type Quantity can be defined because Quantity is a partial type.

Example 2: defining a variable of type PressureBar of Example 2 in Section 4.17.

PressureBar P is 3.

The value of P is 3 bar in user units.

The conversion of 3 bar to SI units is made automatically using 3 bar = rate*3 + offset = (1.e5)*3 + 0 =
3.e5 Pa.

Example 3: defining variables of type Pressure of Example 3 in Section 4.17.

Pressure P1 is 10.e5 Pa;

Pressure P2 is 3 bar;

The conversion of 3 bar to SI units is made automatically using 3 bar = rate*3 + offset = (1.e5)*3 + 0 =
3.e5 Pa.

It is possible to write

Pressure P is (P1 + P2) bar;

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 107 of 136 © EDF SA

P1 and P2 are automatically converted to SI units, they are added, and the result is displayed in bar.

It is possible to write

Pressure P is (10.e5 Pa + 3 bar) bar;

The conversion of 3 bar to SI units is made automatically using 3 bar = rate*3 + offset = (1.e5)*3 + 0 =
3.e5 Pa. The value of P is P = 10.e5 + 3.e5 = 13.e5 in SI units (Pa), that is used for internal
calculations. The result is displayed in bar.

It is possible to write

Real P is (P1 + 3 bar) Pa;

P1 and 3 bar are automatically converted to SI units, they are added, and the result is displayed in Pa.

It is not possible to write

Pressure P is 3;

thus omitting the unit, because Pressure is a partial type that cannot be instantiated.

It is not possible to write

Pressure P is 3 K;

thus specifying a wrong unit, because K is not a subtype of Pressure.

Assuming that the mass, length, and acceleration units have been defined, it is possible to write:

Real m is 10 g;

Real a is 5 [m/s2];

Real S is 2 cm2;

Real P is (m*a/S) bar;

The conversion of the different factors of m*a/S to SI units, and the conversion of the result to bar are
done automatically. However, dimensional analysis is required to check the consistency of the formula
unit wise.

Example 4: defining variables of type AbsoluteTemperature of Example 4 in Section 4.17.

AbsoluteTemperature T1 is 390 K;

AbsoluteTemperature T2 is 20 Celsius;

The conversion of 20 Celsius to SI units is made automatically using 20 Celsius = rate*20 + offset =
1*20 + 273.15 = 293.15 K.

It is not possible to write

AbsoluteTemperature T = (T1 + T2) K;

because operator + is forbidden on AbsoluteTemperature.

It is possible to write

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 108 of 136 © EDF SA

AbsoluteTemperature T = (T1 – 10 Celsius) Celsius;

The conversion of 10 Celsius to SI units is made automatically using 10 Celsius = rate*10 + offset K.
The result is automatically converted to Celsius using the inverted formula.

Example 5: defining external variables

Real x is external;

Pressure P is external bar;

4.19. Type class

4.19.1.Constructors

Natural language syntax Mathematical syntax Semantics Reference

class C is {

Type T1, T2, …, Tn;

T1 a1 [is [value |
external]];

T2 a2 [is [value |
external]];

 …

Tn an [is [value |
external]];

};

class C = {

Type T1, T2, …, Tn;

T1 a1 [= [value |
external]];

T2 a2 [= [value |
external]];

 …

Tn an [= [value |
external]];

};

𝒞: �̂� = {𝑇1: 𝑎1, 𝑇2: 𝑎2, … , 𝑇𝑛: 𝑎𝑛}
3.23.1

3.23.3

4.19.2.Operators

Name Natural language
syntax

Mathematical syntax Semantics Reference

Class
extension

class C1;

class C2 is { expr }
extends C1;

class C1;

class C2 = { expr }
extends C1;

𝒞: 𝐶2 = 𝒞: 𝐶1 + {𝑒𝑥𝑝𝑟} 3.23.2

Multiple
class
extension

class C1;

…

class Cn;

class C is { expr }
extends { C1, …, Cn };

class C1;

…

class Cn;

class C = { expr }
extends { C1, …, Cn
};

𝒞: 𝐶2 = 𝒞: 𝐶1 + ⋯ + 𝒞: 𝐶𝑛

+ {𝑒𝑥𝑝𝑟}
3.23.2

Partial
class

partial class C is {
expr };

partial class C = {
expr };

 𝒞: partial 𝐶 3.23.4

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 109 of 136 © EDF SA

Name Natural language
syntax

Mathematical syntax Semantics Reference

Attribute re-
declaration

class C1 is {

Type T1, …, Tn;

T1 a1 [is [value |
external]];

…

Tn an [is [value |
external]];

};

class C2 is {

Type U1, …, Un;

[redeclare a1] U1
b1 [is [value |
external]];

…

[redeclare an] Un
bn [is [value |
external]];

} extends C1;

class C1 = {

Type T1, …, Tn;

T1 a1 [= [value |
external]];

…

Tn an [= [value |
external]];

};

class C2 = {

Type U1, …, Un;

[redeclare a1]
U1 b1 [= [value |
external]];

…

[redeclare an]
Un bn [= [value |
external]];

} extends C1;

𝒞: 𝐶1 = {𝑇1: 𝑎1, … 𝑇𝑛: 𝑎𝑛}

𝒞: 𝐶2 = 𝐶1 +
{ 𝑈1: 𝑎1 → 𝑏1,

… ,
𝑈𝑛: 𝑎𝑛 → 𝑏𝑛 }

3.23.2

It is not possible to write in the same model

class C2 is { expr };

class C2 extends C1;

because class C2 extends C1 has no value.

Redeclaration of an attribute ‘an’ of a class C1 can be done in a class C2 that extends C1. The
redeclare operator has two arguments: the name of the redeclared attribute ‘an’, and the new
declaration of ‘an’. The name and/or the type of ‘an’ can be changed in the new declaration. Writing
‘redeclare an Un bn is external’ changes the declaration of ‘an’ in C1 to ‘Un bn is external’ in C2.

Example 1: class Equipment

partial class Equipment is {

String id; // Equipment identification

Boolean inOperation is external; // Indicates whether the equipment is in operation or not

};

Example 2: class Pump that extends class Equipment.

class Pump is {

Real c is external; // Pump characteristic

Real efficiency is external; // Pump efficiency

Boolean cav is external; // Indicates whether the pump cavitates or not

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 110 of 136 © EDF SA

/* Requirement that states that the pump must not cavitate while in operation */

Boolean nocav = during inOperation ensure not cav;

} extends Equipment;

Example 3: class CoolingSystem that extends class Equipment and uses class Pump.

class CoolingSystem is {

/* The design of the cooling system features 3 pumps */

Pump P1;

Pump P2;

Pump P3;

} extends Equipment;

Example 4: class CentrifugalPump that extends class Pump with one redeclaration.

class CentrifugalPump is {

/* The name of the attribute c is changed to fc that means "full characteristics" */

redeclare c Real fc is external;

} extends Pump;

Example 5: class CoolingSystemRefined that extends class CoolingSystem to use class
CentrifugalPump instead of class Pump.

class CoolingSystemRefined is {

/* Pumps are redeclared to be centrifugal pumps without changing their names */

redeclare P1 CentrifugalPump P1;

redeclare P2 CentrifugalPump P2;

redeclare P3 CentrifugalPump P3;

} extends CoolingSystem;

Example 6: class CoolingSystemRefined that extends class CoolingSystem to use class
CentrifugalPump instead of class Pump.

class CoolingSystemRefined is {

/* Pumps are redeclared to be centrifugal pumps with new names */

redeclare P1 CentrifugalPump CentrifugalP1;

redeclare P2 CentrifugalPump CentrifugalP2;

redeclare P3 CentrifugalPump CentrifugalP3;

} extends CoolingSystem;

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 111 of 136 © EDF SA

4.20. Objects

4.20.1.Constructors

Natural language syntax Mathematical syntax Semantics Reference

class C is {

Type T1, T2, …, Tn;

T1 a1 [is [value |
external]];

T2 a2 [is [value |
external]];

 …

Tn an [is [value |
external]];

};

C o is new C ([a1 is value,]
[a2 is value,] …[, an is
value]);

class C = {

Type T1, T2, …, Tn;

T1 a1 [= [value |
external]];

T2 a2 [= [value |
external]];

 …

Tn an [= [value |
external]];

};

C o = new C ([a1 = value,]
[a2 = value,] …[, an =
value]);

𝒞𝐶 = {𝑇1: 𝑎1, 𝑇2: 𝑎2, … , 𝑇𝑛: 𝑎𝑛}

𝒞𝐶: 𝑜 = (𝑎1 = 𝑒𝑥𝑝𝑟,
 𝑎2 = 𝑒𝑥𝑝𝑟,

…

𝑎𝑛 = 𝑒𝑥𝑝𝑟)

3.22

An object o is instantiated from a class C by providing values to all attributes which are not declared as
external or that are not defined (i.e., have no value) in the class definition. It is also possible to
override the value of an attribute defined in the class definition, even if the value is external.

Writing ‘C o is new C (…)’ seems redundant as class C is written twice. However, following the general
rule to separate declaration from definition, C o declares object o as being an instance of class C, and
new C (…) creates and defines (i.e., provides a value to) object o. An alternative would be to give the
possibility to merge declaration and definition in a single statement such as ‘C (…) o’ or ‘C o (…)’ as
an exception to the general rule.

Example 1: instantiation of class Equipment in Example 1 of Section 4.17.

Class Equipment cannot be instantiated because it is a partial class.

Example 2: instantiation of class Pump in Example 2 of Section 4.17.

Pump pump1 is new Pump (id = “Pump1”);

‘id’ is the only attribute that does not have a definition in class Pump. However, it is possible to
override the value of attribute nocav with a new requirement:

Pump pump2 is new Pump (id = “Pump2”, nocav = …);

The other attributes are external and are not required to be given a value at class instantiation.

Example 3: instantiation of class CoolingSystem in Example 3 of Section 4.17.

CoolingSystem coolingSystem is new CoolingSystem (id = “CoolingSystem”, P1 = pump1, P2 =
pump2, P3 = Pump (id = “Pump3”, nocav =
…));

The definitions of pump1 and pump2 of Example 2 are used in the definition of coolingSystem.

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 112 of 136 © EDF SA

Example 4: instantiation of class CentrifugalPump in Example 4 of Section 4.17.

CentrifugalPump centrifugaPump1 is new CentrifugalPump (id = “CentrifugalPump1”);

Example 5: instantiation of class CoolingSystemRefined in Example 5 of Section 4.17.

CoolingSystemRefined coolingSystemRefined is new CoolingSystemRefined (id = "CoolingSystem",
P1 = centrifugaPump1, P2 = CentrifugalPump (id = "CentrifugalPump2"),
P3 = CentrifugalPump (id = "CentrifugalPump3", nocav = …));

The definition of centrifugaPump1 of Example 4 is used in the definition of CoolingSystemRefined.

Example 6: instantiation of class CoolingSystemRefined in Example 6 of Section 4.17.

CoolingSystemRefined coolingSystemRefined is new CoolingSystemRefined (id = "CoolingSystem",
CentrifugalP1 = centrifugaPump1, CentrifugalP2 = CentrifugalPump (id =
"CentrifugalPump2"), CentrifugalP3 = CentrifugalPump (id =
"CentrifugalPump3", nocav = …));

The definition of centrifugaPump1 of Example 4 is used in the definition of CoolingSystemRefined.

4.20.2.Operators

Name Natural language
syntax

Mathematical syntax Semantics Reference

Get value

class C is {

Type T1, …, Tn;

T1 a1 [is [value |
external]];

…

Tn an [is [value |
external]];

};

C o ([a1 is value,] …
[, an is value]);

Ti vi is o.ai;

class C = {

Type T1, …, Tn;

T1 a1 [= [value |
external]];

…

Tn an [= [value |
external]];

};

C o ([a1 = value,] …
[, an = value]);

Ti vi = o.ai;

𝒞𝐶 = {𝑇1: 𝑎1, … , 𝑇𝑛: 𝑎𝑛}

𝒞𝐶: 𝑜 = (𝑎1 = 𝑣1,
 …

 𝑎𝑖 = 𝑣𝑖 ,

…

𝑎𝑛 = 𝑣𝑛)

𝑇𝑖 : 𝑣𝑖 = 𝑜. 𝑎𝑖

3.22

3.20.2

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 113 of 136 © EDF SA

Name Natural language
syntax

Mathematical syntax Semantics Reference

Set value

class C is {

Type T1, …, Tn;

T1 a1 [is [value |
external]];

…

Tn an [is [value |
external]];

};

C o ([a1 is value,] …
[, an is value]);

Ti vi;

o.ai is vi;

class C = {

Type T1, …, Tn;

T1 a1 [= [value |
external]];

…

Tn an [= [value |
external]];

};

C o ([a1 = value,] …
[, an = value]);

Ti vi;

o.ai = vi;

𝒞𝐶 = {𝑇1: 𝑎1, … , 𝑇𝑛: 𝑎𝑛}

𝒞𝐶: 𝑜 = (𝑎1 = 𝑣1,
 …

 𝑎𝑖 = 𝑣𝑖 ,

…

𝑎𝑛 = 𝑣𝑛)

𝑜. 𝑎𝑖 = 𝑇𝑖 : 𝑣𝑖

3.22

3.20.2

The value ‘vi’ of attribute ‘ai’ of object ‘o’ is given by ‘vi = o.ai’ where ‘o’ denotes the path of object ‘o’.

The value ‘vi’ is set to attribute ‘ai’ of object ‘o’ by writing ‘o.ai = vi’ where ‘o’ denotes the path of object
‘o’. When using this function, no value should have been set to ‘o.ai’ when instantiating object o from
class C.

Therefore, it is possible to write:

C o is new C;

o.ai = vi;

But it is not possible to write

C o is new C (ai = vi);

o.ai = vi;

because o.ai is then defined twice. Neither is it possible to write

C o is new C;

alone, because o.ai is then not defined, unless o.ai is defined in the class definition:

class C is { …; Ti ai is vi; }

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 114 of 136 © EDF SA

4.21. Type model

4.21.1.Constructors

Natural language syntax Mathematical syntax Semantics Reference

model M is {

model M’ is value;

type T is value;

class C is value;

Operator [T] w1 T1 e1 w2
T2 e2 … wn Tn en = value;

Category c = value;

C o is value;

C {} S is value;

 T x [is [value | external]];

};

model M = {

model M’ = value;

type T = value;

class C = value;

Operator [T] w1 T1
e1 w2 T2 e2 … wn Tn
en = value;

Category c = value;

C o = value;

C {} S = value;

T x [= [value |
external]];

};

ℳ: 𝑀 = {𝑇1: 𝑎1, … , 𝑇𝑛: 𝑎𝑛} 3.24.1

Although it is possible to define external variables in a model, it is recommended to define external
variables in classes only in order to benefit from the automatic binding of external variables via
objects.

4.21.2.Operators

Name Natural language
syntax

Mathematical syntax Semantics Referen
ce

Model
extension

model M1;

model M2 is { expr }
extends M1;

model M1;

model M2 = { expr }
extends M1;

ℳ: 𝑀2

= ℳ: 𝑀1 + {𝑒𝑥𝑝𝑟}
3.24.2

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 115 of 136 © EDF SA

Name Natural language
syntax

Mathematical syntax Semantics Referen
ce

Attribute re-
declaration

model M1 is {

Type T1, …, Tn;

T1 a1 [is [value |
external]];

…

Tn an [is [value |
external]];

};

model M2 is {

Type U1, …, Un;

[redeclare a1] U1
b1 [is [value |
external]];

…

[redeclare an] Un
bn [is [value |
external]];

} extends M1;

model M1 = {

Type T1, …, Tn;

T1 a1 [= [value |
external]];

…

Tn an [= [value |
external]];

};

model M2 = {

Type U1, …, Un;

[redeclare a1] U1
b1 [= [value |
external]];

…

[redeclare an] Un
bn [= [value |
external]];

} extends M1;

ℳ: 𝑀1

= {𝑇1: 𝑎1, … 𝑇𝑛: 𝑎𝑛}

ℳ: 𝑀2

= 𝑀1 +
{ 𝑈1: 𝑎1 → 𝑏1,

… ,
𝑈𝑛: 𝑎𝑛 → 𝑏𝑛 }

3.24.2

While

Periods P is value;

model M is { expr }
while P;

Periods P is value;

model M = { expr } while
P;

2𝒫: 𝑃, ℳ: 𝑀

⊐ 𝑀 = 𝑃
3.24.1

Get value

model M is {

Type Ti;

model M’ is {

Ti ai’ [is [value |
external]];

};

Ti ai is M’.ai’;

};

model M = {

Type Ti;

model M’ is {

Ti ai’ [= [value |
external]];

};

Ti ai = M.ai’;

};

ℳ: 𝑀′ = {… , 𝑇𝑖: 𝑎𝑖
′, … }

ℳ: 𝑀 = { ℳ: 𝑀′, … ,
 𝑇𝑖 : 𝑎𝑖 = 𝑀′. 𝑎𝑖

′, … }

3.22

3.20.2

The extend operator can be combined with the while operator:

model M2 is { expr } extends M1 while P;

model M2 is { expr } while P extends M1;

The value vi’ of variable ai’ of model M’ is given by vi’ = M’.ai’ where M’ denotes the path of model M’.

Example 1: a simple cooling system. This model expresses requirements on the pumps of the system
only.

model CoolingSystem is {

/* Class Equipment is an abstract class for all pieces of equipment in the cooling system to provide
an identifier and the state of the piece of equipment */

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 116 of 136 © EDF SA

partial class Equipment is {

String id; // Unique identifier

Boolean s is external; // State of the equipment, started or not started

};

/* Type Requirement is aimed at providing a dedicated keyword to requirements and forbid the use
of temporal operators by the user. */

type Requirement is Boolean forbid { *, +, integrate };

/* Define type Quantity to handle physical units */

partial type Quantity is (Real q is rate*u + offset) {

String SIUnit; // SI unit for quantity q

String userUnit; // User unit for quantity q

String SIDimension; // Unit for quantity q expressed in the fundamental units

String SIFUnits = "[m][kg][s][K]"; // Fundamental units of the chosen unit system

Real u; // Quantity q expressed in user units

Real rate; // Conversion rate between user units and SI units

Real offset; // Offset between user units and SI units

};

/* Define unit RotationalVelocity */

constant Real pi is 3.141592;

partial type RotationalVelocity is Quantity (SIUnit = "rad/s", SIDimension = "[s-1]");

type RotationalVelocityRPM is RotationalVelocity (userUnit = "rpm", rate = 2*pi/60, offset = 0) alias
rpm;

/* Define operator "during". This operator opens a time period when a Boolean b becomes true and
closes the time period when b becomes false. */

Operator [Periods] during Boolean b = Periods [new Clock b, new Clock not b];

/* It is assumed that the operator check that tells whether a requirement composed of a condition
cond and a time period P is satisfied or not is defined. This operator is fully defined in the ETL
library. */

// Operator [Boolean] Periods check cond over P = value;

/* Class pump represents the way pumps are seen from the perspective of requirement modelling
for the cooling system. The attributes omega and omega_n are given for illustration purposes only
as they are not used in the model. */

class Pump is {

RotationalVelocity omega is external rpm; // Rotational velocity

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 117 of 136 © EDF SA

RotationalVelocity omega_n is 1400 rpm; // Nominal rotational velocity

Boolean cav is external; // Indicates whether the pump cavitates or not

/* Requirement that states that the pump should not cavitate while it is in operation */

Requirement nocav is during s ensure not cav;

} extends Equipment;

/* Class CoolingSystem represents a preliminary design of the cooling system that features only
pumps that should not cavitate. */

class CoolingSystem is {

Pump {} pumps; // Set of pumps of the cooling system

/* Requirement that states that no pump should cavitate within the cooling system */

Requirement nocav is and pumps.nocav;

} extends Equipment;

/* The cooling system is represented by one instance of class CoolingSystem that features 3
pumps. The instantiation of class CoolingSystem automatically creates 3 instances of class Pump,
that in turn create one no-cavitation requirement for each pump. */

CoolingSystem coolingSystem is new
CoolingSystem (pumps is { Pump (id is "P1"), Pump (id is "P2"), Pump (id is "P3") });

};

Example 2: refinement of the simple cooling system. This model expresses additional requirements on
the pumps of the system following design choices regarding the pumps.

model RefinedCoolingSystem is {

/* Define unit day */

partial type Time is Quantity (SIUnit = "s", SIDimension= "[s]");

type TimeDay is Time (userUnit = "d", rate = 3600*24, offset = 0) alias d;

/* Define operator "becomes true". This operator raises an event each time the Boolean b becomes
true. The set of generated events is a clock. */

Operator [Clock] Boolean b becomes true = new Clock b;

/* Define operator "count inside". This operator counts the number of ticks of clock C inside a single
time period P. */

Operator [Clock] ticks Clock c inside Period P = c filter (tick >= P start) and (tick <= P end);

Operator [Integer] count [Boolean] b inside [Period] P = card ticks new Clock b inside P;

/* The class RefinedPump extends the class Pump defined in model CoolingSystem to include the
additional requirement due to pump technology limitations: "The pump must not be started more
than twice in a sliding time period of one day". */

class RefinedPump is {

/* Sliding time period of 1 day. It is a multiple time period that is composed of possibly

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 118 of 136 © EDF SA

overlapping single time periods that start each time the pump is started, and end 1 day (24
hours) later. */

Periods oneDay is [s becomes true, s becomes true + 1 d [;

/* No-start requirement to be satisfied */

Requirement nostart is check (count s inside oneDay) <= 2 over oneDay;

} extends Pump;

/* Extend the class CoolingSystem to redeclare the set of pumps as being instances of the new
class RefinedPump */

class RefinedCoolingSystem is {

/* The attribute pumps in CoolingSystem is redeclared to refinedpumps */

redeclare pumps RefinedPump {} refinedpumps;

} extends CoolingSystem;

/* Redeclare the object coolingSystem to be an instance of the new class RefinedCoolingSystem.
In the new design, only two pumps are considered with different ids. */

redeclare coolingSystem RefinedCoolingSystem refinedCoolingSystem is (refinedpumps is
{ RefinedPump (id is "PO1"), RefinedPump (id is "PO2") });

/* Then in model RefinedCoolingSystem, the additional requirements on the pumps are
automatically generated */

} extends CoolingSystem;

Example 3: define a model that provides a global oracle for the cooling system model by taking the
conjunction of all requirements defined in the cooling system model.

model GlobalCoolingSystem is {

/* A model being a set, the set of all requirements in the model can be obtained by filtering the
elements of the model by type Requirement. The set must be flattened to use the ‘and’ operator,
because binary operators are not defined on sets when two sets are involved, i.e. S1 and S2. It is
possible to flatten the set before or after filtering. */

Requirement global is and (flatten (filter CoolingSystem (type element == Requirement)));

};

Example 4: architectural modelling of the cooling system

The cooling system architecture is represented by the class diagram in Fig. 44.

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 119 of 136 © EDF SA

Fig. 44. Class diagram of the cooling system architecture

model CoolingSystemArchitecture is {

type Requirement is Boolean forbid { *, +, integrate };

type Assumption is Requirement;

/* Define class Equipment */

partial class Equipment is {

String id; // Equipment identification

Boolean inOperation is external; // State in operation or not of the equipment

};

/* Define the abs function */

Operator [Real] abs [Real] x = if x >= 0 then x else −x;

/* Define class CoolingSystem */

class CoolingSystem is {

// Cooling system has 3 pumps

Pump {} pumps is { Pump (id = "PO1"), Pump (id = "PO2"), Pump (id = "PO3") };

// Cooling system has 2 heat exchangers

HeatExchanger {} heatExchangers is { HeatExchanger (id = "HE1"), HeatExchanger (id =

"HE1")};

// Cooling system serves 2 systems

ServedSystem {} servedSystems is { ServedSystem (id = "SE1"), ServedSystem (id = "SE2")};

// Total mass flow rate through the pumps

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 120 of 136 © EDF SA

MassFlowRate m_flow_pump is + pumps.m_flow;

// Total mass flow rate through the heat exchangers

MassFlowRate m_flow_heatExchanger is + heatExchangers.m_flow;

// Ensure that the heat exchangers are connected to the pumping system

Requirement r_flow_1 is during inOperation ensure abs (m_flow_heatExchanger −

m_flow_pump) < eps;

// Ensure that the mass flow rate though the cooling system is quasi-constant around 800 kg/s

Requirement r_flow_2 is during inOperation ensure abs (m_flow_pump − 800 [kg/s]) < 20 [kg/s];

} extends Equipment;

/* Instantiation of the unique cooling system */

coolingSystem is new CoolingSystem;

/* Define class Pump */

class Pump is {

/* Cooling system the pump belongs to */

CoolingSystem coolingSystem is CoolingSystem.coolingSystem;

Boolean cav is external; // Indicates whether the pump cavitates or not

Temperature temp is external; // Pump temperature

MassFlowRate m_flow is external; // Mass flow rate through the pump

Requirement r_noCav is during inOperation ensure not cav; // No cavitation requirement

Requirement r_temp is during inOperation ensure temp >= 5 Celsius and temp <= 40 Celsius;

} extends Equipment;

/* Define class ColdSource */

class ColdSource is {

/* Cooling system the cold source belongs to */

CoolingSystem coolingSystem is CoolingSystem.coolingSystem;

/* Heat exchangers cooled by the cold source */

HeatExchanger {} heatExchangers is CoolingSystem.heatExchangers;

Temperature temp is external; // Cold source temperature

/* Cold source temperature is assumed to be in the range [5 Celsius, 35 Celsius] while the plant

is in operation */

Assumption a_temp is during coolingSystem.inOperation ensure temp >= 5 Celsius and temp

<= 35 Celsius;

};

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 121 of 136 © EDF SA

/* Define class HeatEchanger */

class HeatExchanger is {

/* Cooling system the heat exchanger belongs to */

CoolingSystem coolingSystem is CoolingSystem.coolingSystem;

/* Cold source that cools the heat exchanger */

ColdSource coldSource;

MassFlowRate m_flow is external; // Mass flow rate through the pump

} extends Equipment;

 /* Define class ServedSystem */

class ServedSystem is {

/* Cooling system the served system is attached to */

CoolingSystem coolingSystem is CoolingSystem.coolingSystem;

 };

};

4.22. Type library

4.22.1.Constructors

Natural language syntax Mathematical syntax Semantics Reference

library L is {

library L’ is value;

type T is value;

class C is value;

Operator [T] w1 T1 e1
w2 T2 e2 … wn Tn en =
value;

Category c = value;

};

library L = {

library L’ = value;

type T = value;

class C = value;

Operator [T] w1 T1 e1
w2 T2 e2 … wn Tn en
= value;

Category c = value;

};

ℒ: 𝐿 = {𝑇1: 𝑎1, … , 𝑇𝑛: 𝑎𝑛} 3.25

Example 1: library that contains the definitions of types and classes of Example 1 in Section 4.21.

library CoolingSystemLib is {

/* Class Equipment is an abstract class for all equipment in the cooling system to provide an
identifier and the state of the equipment */

partial class Equipment is {

String id; // Unique identifier

Boolean s is external; // State of the equipment, started or not started

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 122 of 136 © EDF SA

};

/* Type Requirement is aimed at providing a dedicated keyword to requirements and forbid the use
of temporal operators by the user. */

type Requirement is Boolean forbid { *, +, integrate };

/* Define type Quantity to handle physical units */

partial type Quantity is (Real q is rate*u + offset) {

String SIUnit; // SI unit for quantity q

String userUnit; // User unit for quantity q

String SIDimension; // Unit for quantity q expressed in the fundamental units

String SIFUnits = "[m][kg][s][K]"; // Fundamental units of the chosen unit system

Real u; // Quantity q expressed in user units

Real rate; // Conversion rate between user units and SI units

Real offset; // offset between user units and SI units

};

/* Define unit RotationalVelocity */

constant Real pi is 3.141592;

partial type RotationalVelocity is Quantity (SIUnit = "rad/s", SIDimension= "[s-1]");

type RotationalVelocityRPM is RotationalVelocity (userUnit = "rpm", rate = 2*pi/60, offset = 0) alias
rpm;

/* Define operator "during". This operator opens a time period when a Boolean b becomes true,
and closes the time period when b becomes false. */

Operator [Periods] during Boolean b = Periods [new Clock b, new Clock not b];

/* It is assumed that the operator check that tells whether a requirement composed of a condition
cond and a time period P is satisfied or not is defined. This operator is fully defined in the ETL
library. */

// Operator [Boolean] Periods check cond over P = value;

/* Class pump represents the way pumps are seen from the perspective of requirement modelling
for the cooling system. The attributes omega and omega_n are given for illustration purposes only
as they are not used in the model. */

class Pump is {

RotationalVelocity Real omega is external rpm; // Rotational velocity

RotationalVelocity omega_n is 1400 rpm; // Nominal rotational velocity

Boolean cav is external; // Indicates whether the pump cavitates or not

/* Requirement that states that the pump should not cavitate while it is in operation */

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 123 of 136 © EDF SA

Requirement nocav is during s ensure not cav;

} extends Equipment;

/* Class CoolingSystem represents a preliminary design of the cooling system that features only
pumps that should not cavitate. */

class CoolingSystem is {

Pump {} pumps; // Set of pumps of the cooling system

/* Requirement that states that no pump should cavitate within the cooling system */

Requirement nocav is and pumps.nocav;

};

Then model CoolingSystem can be rewritten using library CoolingSystemLib.

model CoolingSystem is {

/* The cooling system is represented by one instance of class CoolingSystemLib.CoolingSystem
that features 3 pumps. The instantiation of class CoolingSystemLib.CoolingSystem automatically
creates 3 instances of class CoolingSystemLib.Pump, that in turn create one no-cavitation
requirement for each pump that must be satisfied. */

CoolingSystem coolingSystem is new
CoolingSystemLib.CoolingSystem (pumps is { CoolingSystemLib.Pump (id is "P1"),
CoolingSystemLib.Pump (id is "P2"), CoolingSystemLib.Pump (id is "P3") });

};

In order to avoid using the path CoolingSystemLib. for every CoolingSystemLib definition inside model
CoolingSystem, it is possible to insert library CoolingSystemLib into model CoolingSystem so that the
elements of CoolingSystemLib are within the namespace of CoolingSystem.

model CoolingSystem is CoolingSystemLib union {

/* The cooling system is represented by one instance of class CoolingSystemLib.CoolingSystem
that features 3 pumps. The instantiation of class CoolingSystemLib.CoolingSystem automatically
creates 3 instances of class CoolingSystemLib.Pump, that in turn create one no-cavitation
requirement for each pump that must be satisfied. */

CoolingSystem coolingSystem is new
CoolingSystem (pumps is { Pump (id is "P1"), Pump (id is "P2"), Pump (id is "P3") });

};

Alternatively, it is possible to write

model CoolingSystem is {

/* The cooling system is represented by one instance of class CoolingSystemLib.CoolingSystem
that features 3 pumps. The instantiation of class CoolingSystemLib.CoolingSystem automatically
creates 3 instances of class CoolingSystemLib.Pump, that in turn create one no-cavitation
requirement for each pump that must be satisfied. */

CoolingSystem coolingSystem is new
CoolingSystem (pumps is { Pump (id is "P1"), Pump (id is "P2"), Pump (id is "P3") });

} union CoolingSystemLib;

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 124 of 136 © EDF SA

4.23. Type package

4.23.1.Constructors

Natural language syntax Mathematical syntax Semantics Reference

package P is {

package P’ is value;

library L is value;

model M is value;

};

package P = {

package P’ = value;

library L = value;

model M = value;

};

𝒯: 𝑃 = {𝑇1: 𝑎1, … , 𝑇𝑛: 𝑎𝑛} 3.26

Example 1: a package for the cooling system that contains the CoolingSystemLib library and the
CoolingSystem model

package CoolingSystem is {

library CoolingSystemLib is {

/* Class Equipment is an abstract class for all equipment in the cooling system to provide an
identifier and the state of the equipment */

partial class Equipment is {

String id; // Unique identifier

Boolean s is external; // State of the equipment, started or not started

};

/* Type Requirement is aimed at providing a dedicated keyword to requirements and forbid the
use of temporal operators by the user. */

type Requirement is Boolean forbid { *, +, integrate };

/* Define type Quantity to handle physical units */

partial type Quantity is (Real q is rate*u + offset) {

String SIUnit; // SI unit for quantity q

String userUnit; // User unit for quantity q

String SIDimension; // Unit for quantity q expressed in the fundamental units

String SIFUnits = "[m][kg][s][K]"; // Fundamental units of the chosen unit system

Real u; // Quantity q expressed in user units

Real rate; // Conversion rate between user units and SI units

Real offset; // offset between user units and SI units

};

/* Define unit RotationalVelocity */

constant Real pi is 3.141592;

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 125 of 136 © EDF SA

partial type RotationalVelocity is Quantity (SIUnit = "rad/s", SIDimension= "[s-1]");

type RotationalVelocityRPM is RotationalVelocity (userUnit = "rpm", rate = 2*pi/60, offset = 0)
alias rpm;

/* Define operator "during". This operator opens a time period when a Boolean b becomes true,
and closes the time period when b becomes false. */

Operator [Periods] during Boolean b = Periods [new Clock b, new Clock not b];

/* It is assumed that the operator check that tells whether a requirement composed of a
condition cond and a time period P is satisfied or not is defined. This operator is fully defined in
the ETL library. */

// Operator [Boolean] Periods check cond over P = value;

/* Class pump represents the way pumps are seen from the perspective of requirement modelling
for the cooling system. The attributes omega and omega_n are given for illustration purposes only
as they are not used in the model. */

class Pump is {

RotationalVelocity omega is is external rpm; // Rotational velocity

RotationalVelocity omega_n is 1400 rpm; // Nominal rotational velocity

is external Boolean cav is external; // Indicates whether the pump cavitates or not

/* Requirement that states that the pump should not cavitate while it is in operation */

Requirement nocav is during s ensure not cav;

} extends Equipment;

/* Class CoolingSystem represents a preliminary design of the cooling system that features only
pumps that should not cavitate. */

class CoolingSystem is {

Pump {} pumps; // Set of pumps of the cooling system

/* Requirement that states that no pump should cavitate within the cooling system */

Requirement nocav is and pumps.nocav;

};

};

model CoolingSystem is CoolingSystemLib union {

/* The cooling system is represented by one instance of class CoolingSystemLib.CoolingSystem
that features 3 pumps. The instantiation of class CoolingSystemLib.CoolingSystem
automatically creates 3 instances of class CoolingSystemLib.Pump, that in turn create one no-
cavitation requirement for each pump that must be satisfied. */

CoolingSystem coolingSystem is new
CoolingSystem (pumps is { Pump (id is “P1”), Pump (id is “P2”), Pump (id is “P3”) });

};

};

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 126 of 136 © EDF SA

4.24. Type Probability

4.24.1.Constructors

Natural language syntax Mathematical syntax Semantics Reference

Boolean b;

Probability x is new
Probability b;

Boolean b;

Probability x = new
Probability (b);

ℝ: 𝑡, 𝕆(Ω ⟶ 𝔹2): 𝑏

𝕆(𝔹2 ⟶ ℝ): 𝑥 = ℙ(𝑏
= 𝑡𝑟𝑢𝑒|𝑡)

3.13

Boolean b;

Clock c;

Probability x is new
Probability b at c;

Boolean b;

Clock c;

Probability x = new
Probability (b, c);

𝒟: 𝑐, 𝕆(Ω ⟶ 𝔹2): 𝑏

𝕆(𝔹2 ⟶ ℝ): 𝑥 = ℙ(𝑏
= 𝑡𝑟𝑢𝑒|𝑐𝑖)

3.13

new Probability b computes the probability that b is true at all time instants t.

new Probability b at c computes the probability that b is true at all ticks of clock c.

4.24.2.Operators

Name Natural language
syntax

Mathematical syntax Semantics Reference

Probability
estimator

Probability x;

Real y is estimator x;

Probability x;

Real y = estimator x;

𝕆(𝔹2 ⟶ ℝ): 𝑥

ℝ: 𝑦 = 𝔼[𝑥]
3.13

Probability
variance

Probability x;

Real y is estimator
variance x;

Probability x;

Real y = estimator
variance x;

𝕆(𝔹2 ⟶ ℝ): 𝑥

ℝ: 𝑦 = 𝕍ar[𝑥]
3.13

Example 1: While the system is in operation, there should not be more than two pump failures in a
sliding time period of one month with a probability greater than 99%.

/* Type Requirement is aimed at providing a dedicated keyword to requirements and forbid the use of
temporal operators by the user. */

type Requirement is Boolean forbid { *, +, integrate };

/* Type Events synonymous to Clock */

type Events is Clock;

/* Operator that defines time periods while a Boolean is true, including the opening events and
excluding the closing events */

Operator [Periods] during Boolean b excluding closing events = [b becomes true, b becomes false [;

/* Operator that defines a sliding time period deltaT over a given time period P for occurring events e */

operator [Periods] during Time deltaT sliding while Periods P for Events e = [e or P start, (e or P
start) + deltaT [while P;

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 127 of 136 © EDF SA

/* Class pump that contains the requirements on pumps. The operators used in this example are
defined in the ETL and FORM-L libraries. */

class Pump is {

/* External variable that tells whether the system is in operation */

Boolean inOperation is external;

/* External variable that tells whether the pump is in a failure state */

Boolean failure is external;

/* No-start non-probabilistic requirement. It is not declared as a requirement because it is not the
final requirement to be satisfied. */

Boolean nostart is (during inOperation excluding closing events) ensure ((during 1 month sliding
while inOperation for Events failure) check count Events failure <= 2);

/* Probability that requirement no-start is true at end of the system operation */

Real p is estimator new Probability noStart at inOperation becomes false;

/* Probabilistic no-start requirement. It is declared as a requirement because it is the final
requirement to be satisfied. */

Requirement noStartProb is during inOperation check at end p > 0.99;

};

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 128 of 136 © EDF SA

5. ETL library

5.1. Operators on Booleans

Logical disjunction

𝔹: 𝑏1, 𝔹: 𝑏2

𝔹: 𝑏1 ∨ 𝑏2 = ¬(¬𝑏1 ∧ ¬𝑏2)

Template b1 or b2 = not (not b1 and not b2);

Exclusive logical disjunction

𝔹: 𝑏1, 𝔹: 𝑏2

𝔹: 𝑏1 ⨁ 𝑏2 = (𝑏1 ∨ 𝑏2) ∧ ¬(𝑏1 ∧ 𝑏2)

Template b1 xor b2 = (b1 or b2) and not (b1 and b2);

Logical inference

𝔹: 𝑏1, 𝔹: 𝑏2

𝔹: 𝑏1 ⇒ 𝑏2 = ¬𝑏1 ∨ 𝑏2

Template b1 implies b2 = not b1 or b2;

5.2. Operators on clocks

Filter clock ticks inside a time period

𝒟: 𝐶, 𝒫: 𝑃

𝒟: 𝑖𝑛𝑠𝑖𝑑𝑒(𝐶, 𝑃) = 𝐶(rank(∗) ≥ 𝑃 ↑ ∧ rank(∗) ≤ 𝑃 ↓)

Operator [Clock] Clock C inside Period P = C filter (tick >= P start) and (tick <= P end);

Count the occurrences of events inside a time period

𝒟: 𝐶, 𝒫: 𝑃

ℕ: 𝑐𝑜𝑢𝑛𝑡. 𝑖𝑛𝑠𝑖𝑑𝑒(𝐶, 𝑃) = |𝑖𝑛𝑠𝑖𝑑𝑒(𝐶, 𝑃)|

Operator [Integer] count Clock C inside Period P = card (C inside P);

5.3. Operators on events

Events generated when a Boolean becomes true

 𝔹: 𝑏, 𝒟: 𝑐

𝒟: 𝑏𝑒𝑐𝑜𝑚𝑒𝑠. 𝑡𝑟𝑢𝑒 (𝑏) = 𝑐(𝑏)

Operator [Clock] Boolean b becomes true = new Clock b;

Events generated when a Boolean becomes false

𝔹: 𝑏, 𝒟: 𝑐

𝒟: 𝑏𝑒𝑐𝑜𝑚𝑒𝑠. 𝑓𝑎𝑙𝑠𝑒 (𝑏) = 𝑐(¬𝑏)

Operator [Clock] Boolean b becomes false = new Clock not b;

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 129 of 136 © EDF SA

Events generated when a Boolean becomes true inside a time period

𝔹: 𝑏, 𝒫: 𝑃

𝒟: 𝑏𝑒𝑐𝑜𝑚𝑒𝑠. 𝑡𝑟𝑢𝑒. 𝑖𝑛𝑠𝑖𝑑𝑒 (𝑏, 𝑃) = 𝑖𝑛𝑠𝑖𝑑𝑒 (𝑏𝑒𝑐𝑜𝑚𝑒𝑠. 𝑡𝑟𝑢𝑒 (𝑏), 𝑃)

Operator [Clock] Boolean b becomes true inside Period P = (b becomes true) inside P;

Events generated when a Boolean becomes false inside a time period

𝔹: 𝑏, 𝒫: 𝑃

𝒟: 𝑏𝑒𝑐𝑜𝑚𝑒𝑠. 𝑓𝑎𝑙𝑠𝑒. 𝑖𝑛𝑠𝑖𝑑𝑒 (𝑏, 𝑃) = 𝑖𝑛𝑠𝑖𝑑𝑒 (𝑏𝑒𝑐𝑜𝑚𝑒𝑠. 𝑓𝑎𝑙𝑠𝑒 (𝑏), 𝑃)

Operator [Clock] Boolean b becomes false inside Period P = (b becomes false) inside P;

5.4. Operators for the evaluation of requirements

Check

 𝔹: 𝜑, 2𝒫: 𝑃 = {𝑃𝑖}1≤𝑖≤|𝑃|

𝔹: 𝑐ℎ𝑒𝑐𝑘. 𝑜𝑣𝑒𝑟(𝜑, 𝑃) = 𝜑 ⊗ 𝑃 ∶= ⋀ 𝜑 ⊗ {𝑃𝑖}
|𝑃|

𝑖=1

Operator [Boolean] check Boolean phi over Periods P = and (evaluate phi over P);

Evaluate

𝒫: 𝑃, 𝔹: 𝜑

𝔹: 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒. 𝑜𝑣𝑒𝑟(𝜑, 𝑃) = 𝜑 ⊗ 𝑃 ∶= ∫ 𝑎(𝜑, 𝑃) × 𝜑

𝑃

Operator [Boolean] evaluate Boolean phi over Period P = integrate ((decide phi over P) * phi) on P;

Decide

𝒫: 𝑃, 𝔹: 𝜑

𝔹: 𝑑𝑒𝑐𝑖𝑑𝑒. 𝑜𝑣𝑒𝑟(𝜑, 𝑃) = 𝑎(𝜑, 𝑃) ≔ 𝜑 ∨ 𝑃 ↓

Operator decide is Operator [Boolean] decide Boolean phi over Period P = phi or (P end));

𝒞(ℕ2 ⟶ 𝔹): increasing1, 𝒞(ℝ2 ⟶ 𝔹): increasing2, 𝒞(𝔹 ⟶ 𝔹): varying1, 𝒞(𝔹 ⟶ 𝔹): varying2

{ increasing1, increasing2, varying1, varying2 } ⊂ 𝒞(𝑑𝑒𝑐𝑖𝑑𝑒 ∙ 𝑜𝑣𝑒𝑟(𝜑, 𝑃))

Category c1 is Category increasing1 = { (>, >), (>=, >=), (<, >=), (<=, >), (==, >), (<>, >) };

Category {} C1 is associate increasing1 with decide;

Category c2 is Category increasing2 = { (>, >), (>=, >=), (<, >=), (<=, >) };

Category {} C2 is associate increasing2 with decide;

Operator [Boolean] id Boolean b = b;

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 130 of 136 © EDF SA

Operator [Boolean] cte_false Boolean b = false;

Operator [Boolean] cte_true Boolean b = true;

Category c3 is Category varying1 = { (id, cte_false) };

Category {} C3 is associate varying1 with decide;

Category c4 is Category varying2 = { (id, cte_true) };

Category {} C4 is associate varying2 with decide;

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 131 of 136 © EDF SA

6. FORM-L library

6.1. Time periods

From events occur

𝒟: 𝐸

2𝒫: 𝑓𝑟𝑜𝑚 (𝐸) = [𝐸, ∅]

Operator [Periods] from Clock E = Periods [E, new Clock false];

After events occur

𝒟: 𝐸

2𝒫 : 𝑎𝑓𝑡𝑒𝑟 (𝐸) =]𝐸, ∅]

Operator [Periods] after Clock E = Periods] E, new Clock false];

Before events occur

𝒟: 𝐸

2𝒫: 𝑏𝑒𝑓𝑜𝑟𝑒 (𝐸) = [∅, 𝐸[

Operator [Periods] before Clock E = Periods [new Clock false, E [;

Until events occur

𝒟: 𝐸

2𝒫: 𝑢𝑛𝑡𝑖𝑙 (𝐸) = [∅, 𝐸]

Operator [Periods] until Clock E = Periods [new Clock false, E];

While a Boolean is true

𝔹: 𝑏, 𝒟: 𝑐

2𝒫: 𝑑𝑢𝑟𝑖𝑛𝑔 (𝑏) = [c(b), 𝑐(¬𝑏)]

Operator [Periods] during Boolean b = Periods [new Clock b, new Clock not b];

After events occur and before events occur

𝒟: 𝐸1, 𝒟: 𝐸2

2𝒫: 𝑎𝑓𝑡𝑒𝑟. 𝑏𝑒𝑓𝑜𝑟𝑒 (𝐸1, 𝐸2) =]𝐸1, 𝐸2[

Operator [Periods] after Clock E1 before Clock E2 = Periods] E1, E2 [;

After events occur and until events occur

𝒟: 𝐸1, 𝒟: 𝐸2

2𝒫: 𝑎𝑓𝑡𝑒𝑟. 𝑢𝑛𝑡𝑖𝑙 (𝐸1, 𝐸2) =]𝐸1, 𝐸2]

Operator [Periods] after Clock E1 until Clock E2 = Periods] E1, E2];

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 132 of 136 © EDF SA

After events occur and for an elapsed time

𝒟: 𝐸, ℝ: 𝑑

2𝒫: 𝑎𝑓𝑡𝑒𝑟. 𝑓𝑜𝑟 (𝐸, 𝑑) =]𝐸, 𝐸 + 𝑑]

Operator [Periods] after Clock E for Real d = Periods] E, E + d];

After events occur and within an elapsed time

𝒟: 𝐸, ℝ: 𝑑

2𝒫: 𝑎𝑓𝑡𝑒𝑟. 𝑤𝑖𝑡ℎ𝑖𝑛 (𝐸, 𝑑) =]𝐸, 𝐸 + 𝑑[

Operator [Periods] after Clock E within Real d = Periods] E, E + d [;

From events occur and before events occur

𝒟: 𝐸1, 𝒟: 𝐸2

2𝒫: 𝑓𝑟𝑜𝑚. 𝑏𝑒𝑓𝑜𝑟𝑒 (𝐸1, 𝐸2) = [𝐸1, 𝐸2[

Operator [Periods] from Clock E1 before Clock E2 = Periods [E1, E2 [;

From events occur and until events occur

𝒟: 𝐸1, 𝒟: 𝐸2

2𝒫: 𝑓𝑟𝑜𝑚. 𝑢𝑛𝑡𝑖𝑙 (𝐸1, 𝐸2) = [𝐸1, 𝐸2]

Operator [Periods] from Clock E1 until Clock E2 = Periods [E1, E2];

From events occur and for an elapsed time

𝒟: 𝐸, ℝ: 𝑑

2𝒫: 𝑓𝑟𝑜𝑚. 𝑓𝑜𝑟 (𝐸, 𝑑) = [𝐸, 𝐸 + 𝑑]

Operator [Periods] from Clock E for Real d = Periods [E, E + d];

From events occur and within an elapsed time

𝒟: 𝐸, ℝ: 𝑑

2𝒫 : 𝑓𝑟𝑜𝑚. 𝑤𝑖𝑡ℎ𝑖𝑛 (𝐸, 𝑑) = [𝐸, 𝐸 + 𝑑[

Operator [Periods] from Clock E within Real d = Periods [E, E + d [;

When events occur

𝒟: 𝐸

2𝒫: 𝑤ℎ𝑒𝑛 (𝐸) = [𝐸, 𝐸]

Operator [Periods] when Clock E = Periods [E, E];

6.2. Requirements

Checking that a requirement is satisfied at the end of a time period

2𝒫: 𝑃, 𝔹: 𝑏, 𝒞(𝔹 ⟶ 𝔹): varying1

𝔹: 𝑐ℎ𝑒𝑐𝑘. 𝑎𝑡. 𝑒𝑛𝑑 (𝑃, 𝑏) = 𝑐ℎ𝑒𝑐𝑘. 𝑜𝑣𝑒𝑟 (varying1 (𝑏), 𝑃)

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 133 of 136 © EDF SA

Operator [Boolean] Periods P check at end Boolean b = check varying1 id b over P;

Checking that a requirement is satisfied at any time instant of a time period

2𝒫: 𝑃, 𝔹: 𝑏, 𝒞(𝔹 ⟶ 𝔹): varying2

𝔹: 𝑐ℎ𝑒𝑐𝑘. 𝑎𝑛𝑦𝑡𝑖𝑚𝑒 (𝑃, 𝑏) = 𝑐ℎ𝑒𝑐𝑘. 𝑜𝑣𝑒𝑟 (varying2 (𝑏), 𝑃)

Operator [Boolean] Periods P check anytime Boolean b = check varying2 id b over P;

Ensuring that a requirement is satisfied all along a time period

2𝒫 : 𝑃, 𝔹: 𝑏

𝔹: 𝑒𝑛𝑠𝑢𝑟𝑒 (𝑃, 𝑏) = 𝑐ℎ𝑒𝑐𝑘. 𝑜𝑣𝑒𝑟 (𝑐𝑜𝑢𝑛𝑡. 𝑜𝑣𝑒𝑟(𝑏𝑒𝑐𝑜𝑚𝑒𝑠. 𝑡𝑟𝑢𝑒 (𝑏), 𝑃) = 0, 𝑃) ∧ 𝑐ℎ𝑒𝑐𝑘. 𝑎𝑛𝑦𝑡𝑖𝑚𝑒 (𝑏, 𝑃)

Operator [Boolean] Periods P ensure Boolean b = (check (count (b becomes true) == 0) over P) and
(P check anytime b);

Checking that the number of event occurrences at the end of a time period is lower or higher than a
threshold

2𝒫: 𝑃, 𝒟: 𝐸, ℕ: 𝑛, 𝒞(ℕ2 ⟶ 𝔹): increasing1

𝔹: 𝑐ℎ𝑒𝑐𝑘. 𝑐𝑜𝑢𝑛𝑡 (𝑃, 𝐸, 𝑛) = 𝑐ℎ𝑒𝑐𝑘. 𝑜𝑣𝑒𝑟 (𝑐𝑜𝑢𝑛𝑡. 𝑖𝑛𝑠𝑖𝑑𝑒 (𝐸, 𝑃) increasing1 (<) 𝑛, 𝑃)

Operator [Boolean] Periods P check count Clock E '<' constant Integer n = check ((count E inside P)
increasing1 < n) over P;

2𝒫: 𝑃, 𝒟: 𝐸, ℕ: 𝑛, 𝒞(ℕ2 ⟶ 𝔹): increasing1

𝔹: 𝑐ℎ𝑒𝑐𝑘. 𝑐𝑜𝑢𝑛𝑡 (𝑃, 𝐸, 𝑛) = 𝑐ℎ𝑒𝑐𝑘. 𝑜𝑣𝑒𝑟 (𝑐𝑜𝑢𝑛𝑡. 𝑖𝑛𝑠𝑖𝑑𝑒 (𝐸, 𝑃) increasing1 (≤) 𝑛, 𝑃)

Operator [Boolean] Periods P check count Clock E '<=' constant Integer n = check ((count E inside P)
increasing1 <= n) over P;

2𝒫: 𝑃, 𝒟: 𝐸, ℕ: 𝑛, 𝒞(ℕ2 ⟶ 𝔹): increasing1

𝔹: 𝑐ℎ𝑒𝑐𝑘. 𝑐𝑜𝑢𝑛𝑡 (𝑃, 𝐸, 𝑛) = 𝑐ℎ𝑒𝑐𝑘. 𝑜𝑣𝑒𝑟 (𝑐𝑜𝑢𝑛𝑡. 𝑖𝑛𝑠𝑖𝑑𝑒 (𝐸, 𝑃) increasing1 (>) 𝑛, 𝑃)

Operator [Boolean] Periods P check count Clock E '>' constant Integer n = check ((count E inside P)
increasing1 > n) over P;

2𝒫: 𝑃, 𝒟: 𝐸, ℕ: 𝑛, 𝒞(ℕ2 ⟶ 𝔹): increasing1

𝔹: 𝑐ℎ𝑒𝑐𝑘. 𝑐𝑜𝑢𝑛𝑡 (𝑃, 𝐸, 𝑛) = 𝑐ℎ𝑒𝑐𝑘. 𝑜𝑣𝑒𝑟 (𝑐𝑜𝑢𝑛𝑡. 𝑖𝑛𝑠𝑖𝑑𝑒 (𝐸, 𝑃) increasing1 (≥) 𝑛, 𝑃)

Operator [Boolean] Periods P check count Clock E '>=' constant Integer n = check ((count E inside P)
increasing1 >= n) over P;

2𝒫: 𝑃, 𝒟: 𝐸, ℕ: 𝑛, 𝒞(ℕ2 ⟶ 𝔹): increasing1

𝔹: 𝑐ℎ𝑒𝑐𝑘. 𝑐𝑜𝑢𝑛𝑡 (𝑃, 𝐸, 𝑛) = 𝑐ℎ𝑒𝑐𝑘. 𝑜𝑣𝑒𝑟 (𝑐𝑜𝑢𝑛𝑡. 𝑖𝑛𝑠𝑖𝑑𝑒 (𝐸, 𝑃) increasing1 (=) 𝑛, 𝑃)

Operator [Boolean] Periods P check count Clock E '==' constant Integer n = check ((count E inside
P) increasing1 == n) over P;

2𝒫: 𝑃, 𝒟: 𝐸, ℕ: 𝑛, 𝒞(ℕ2 ⟶ 𝔹): increasing1

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 134 of 136 © EDF SA

𝔹: 𝑐ℎ𝑒𝑐𝑘. 𝑐𝑜𝑢𝑛𝑡 (𝑃, 𝐸, 𝑛) = 𝑐ℎ𝑒𝑐𝑘. 𝑜𝑣𝑒𝑟 (𝑐𝑜𝑢𝑛𝑡. 𝑖𝑛𝑠𝑖𝑑𝑒 (𝐸, 𝑃) increasing1 (≠) 𝑛, 𝑃)

Operator [Boolean] Periods P check count Clock E '<>' constant Integer n = check ((count E inside
P) increasing1 <> n) over P;

Checking that the duration of a condition at the end of a time period is lower or higher than a threshold

2𝒫: 𝑃, 𝔹: 𝑏, ℝ: 𝑑, 𝒞(ℝ2 ⟶ 𝔹): increasing2

𝔹: 𝑐ℎ𝑒𝑐𝑘. 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑃, 𝑏, 𝑑) = 𝑐ℎ𝑒𝑐𝑘. 𝑜𝑣𝑒𝑟 (𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑏, 𝑃) increasing2 (<) 𝑑, 𝑃)

Operator [Boolean] Periods P check duration Boolean b '<' constant Real d = check ((duration b on
P) increasing2 < d) over P;

2𝒫: 𝑃, 𝔹: 𝑏, ℝ: 𝑑, 𝒞(ℝ2 ⟶ 𝔹): increasing2

𝔹: 𝑐ℎ𝑒𝑐𝑘. 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑃, 𝑏, 𝑑) = 𝑐ℎ𝑒𝑐𝑘. 𝑜𝑣𝑒𝑟 (𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑏, 𝑃) increasing2 (≤) 𝑑, 𝑃)

Operator [Boolean] Periods P check duration Boolean b '<=' constant Real d = check ((duration b on
P) increasing2 <= d) over P;

2𝒫: 𝑃, 𝔹: 𝑏, ℝ: 𝑑, 𝒞(ℝ2 ⟶ 𝔹): increasing2

𝔹: 𝑐ℎ𝑒𝑐𝑘. 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑃, 𝑏, 𝑑) = 𝑐ℎ𝑒𝑐𝑘. 𝑜𝑣𝑒𝑟 (𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑏, 𝑃) increasing2 (>) 𝑑, 𝑃)

Operator [Boolean] Periods P check duration Boolean b '>' constant Real d = check ((duration b on
P) increasing2 > d) over P;

2𝒫: 𝑃, 𝔹: 𝑏, ℝ: 𝑑, 𝒞(ℝ2 ⟶ 𝔹): increasing2

𝔹: 𝑐ℎ𝑒𝑐𝑘. 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑃, 𝑏, 𝑑) = 𝑐ℎ𝑒𝑐𝑘. 𝑜𝑣𝑒𝑟 (𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑏, 𝑃) increasing2 (≥) 𝑑, 𝑃)

Operator [Boolean] Periods P check duration Boolean b '>=' constant Real d = check ((duration b on
P) increasing2 >= d) over P;

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 135 of 136 © EDF SA

7. Bibliography

88Solutions Corporation et al. (2021). Kernel Modeling Language (KerML). Object Management
Group, Inc. (OMG).

88Solutions Corporation et al. (2021). OMG Systems Modeling Language TM. Object Management
Group, Inc. (OMG).

Azzouzi, E. (2021). Multi-Faceted Modelling of Multi-Energy Systems : Stakeholders Coordination.
PhD Thesis. Université Paris-Saclay.

Azzouzi, E., Bouskela, D., Jardin, A., Mhenni, F., & Choley, J.-Y. (2022). A New Contract Formalism
for the Coordination of Large Systems of Systems. J. of Advanced Engineering Informatics.
Elsevier. Under submission.

Azzouzi, E., Jardin, A., Bouskela, D., Mhenni, F., & Choley, J.-Y. (2019). Towards a Rigourous
Approach to Coordinate Stakeholders of a Multi-Energy Cyber-physical System. CPI 2019:
Advances in Integrated Design and Production.

Azzouzi, E., Jardin, J., Bouskela, D., Mhenni, F., & Choley, J.-Y. (2019). A survey on systems
engineering methodologies for large multi-energycyber-physical systems. 2019 IEEE
International Systems Conference (SysCon), 2019, pp. 1-8.

Bouissou, M., & Buffoni, L. (2020). Generic method to transform a Modelica simulation model into a
dynamic reliability model. 22e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement
λμ22.

Bouquerel, M., Kremers, E., van der Kamp, J., Nguyen, T., & Jardin, A. (2019). Requirements
modelling to help decision makers to efficiently renovate energy systems of urban districts.
Proceedings of the 2019 Summer Simulation Conference. Society for Computer Simulation
International, 2019, p. 44.

Bouskela, D., & Jardin, J. (2018). ETL: A New Temporal Language for the Verification of Cyber-
Physical Systems. 2018 Annual IEEE International Systems Conference (SysCon), 2018, pp.
1-8.

Bouskela, D., Nguyen, T., & Jardin, A. (2017). Toward a rigorous approach for verifying cyber-physical
systems against requirements. Canadian Journal of Electrical and Computer Engineering,
2017.

Chechik, M., Devereux, B., Easterbrook, S., & Gurfinkel, A. (2004). Multi-valued symbolic model-
checking. ACM Transactions on Software Engineering and Methodology.

Darimont , R., & van Lamsweerde, A. (1996). Formal refinement patterns for goal-driven requirements
elaboration. 1996 ACM 0-89791-797-9/96/0010. SIGSOFT'96 CA, USA.

Fuxman, A., Liu, L., Mylopoulos, J., Pistore, M., Roveri, M., & Traverso, P. (2004). Specifying and
Analyzing Early Requirements in Tropos. Requirements Engineering 9(2):132-150.

Garro, A., Tundis, A., Bouskela, D., Jardin, A., Nguyen, T., Otter, M., . . . Olsson, H. (2016). On formal
cyber physical system properties modeling: A new temporal logic language and a Modelica-
based solution. 2016 IEEE International Symposium on Systems Engineering (ISSE).

Kanso, B., & Taha, S. (2012). Temporal Constraint Support for OCL. SLE2012, Sep 2012, Dresden,
Germany. pp.83-103. hal-00762150.

Li, F.-L., Horkoff, J., Borgida, A., Guizzardi, G., Liu, L., & Mylopoulos, J. (2015). From stakeholder
requirements to formal specifications through refinement. REFSQ 2015: Requirements
Engineering: Foundation for Software Quality pp 164–180.

Nguyen, T. (2019). Formal requirements and constraints modelling in FORM-L for the engineering of
complex socio-technical systems. 2019 IEEE 27th International Requirements Engineering
Conference Workshops (REW), Sep. 2019, pp. 123–132.

Nguyen, T. (2021). The BASAALT (Behaviour Analysis & Simulation All Along Life Time) systems
engineering method, and the FORM-L Language (Formal Requirements Modelling Language).

EDF R&D CRML specification Version 1.2

Accessibility : Free Page 136 of 136 © EDF SA

EDF R&D Technical Report n° 6125-3113-2019-03969-EN.

Nguyen, T., & Bouissou, M. (2020). Early Integration of Dependability Studies in the Design of Cyber-
Physical Systems -. Proceedings of the 30th European Safety and Reliability Conference.
ESREL, Research Publishing, Singapore.

Ponsard, C., & Devroey, X. (2011). Generating High-Level Event-B System Models from KAOS
Requirements Models. INFORSID: Actes du XXIXème Congrès INFORSID. pp. 317-332.

Santos, C. A., Saleh, A. H., Schrijvers, T., & Nicolai, M. (2019). CONDEnSe: Contract-Based Design
Synthesis. 2019 ACM/IIIEEE 22nd International Conference on Model Driven Engineering
Languages and Systems (MODELS). IEEE.

Stachtiari, E., Mavridou, A., Katsaros, P., Bliudze, S., & Sifakis, J. (2018). Early validation of system
requirements and design through correctness-by-construction. Journal of Systems and
Software. Elsevier.

Walden, D., Roedler, G., Forsberg, K., Hamelin, D., & Shortell, T. (s.d.). INCOSE Systems
Engineering Handbook: A Guide for System Life Cycle Processes and Activities, 4th Edition.
INCOSE, ISBN: 978-1-118-99940-0.

Whittle, J., Bencomo, N., Cheng, B., & Bruel, J.-M. (2010). Language to Address Uncertainty in Self-
Adaptive Systems Requirements. Requirements Engineering.

Zhang, H., Dufour, F., Dutuit, Y., & Gonzalez, K. (2008). Piecewise deterministic Markov processes.
Proc. IMechE Vol. 222 Part O: J. Risk and Reliability.

